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ABSTRACT

Unsupervised learning based on Contrastive Learning (CL)
has attracted a lot of interest recently. This is due to excellent
results on a variety of subsequent tasks (especially classifi-
cation) on benchmark datasets (ImageNet, CIFAR-10, etc.)
without the need of large quantities of labeled samples. This
work explores the application of some of the most relevant
CL techniques on a large unlabeled dataset of aerial images of
building rooftops. The task that we want to solve is roof type
classification using a much smaller labeled dataset. The main
problem with this task is the strong dataset bias and class im-
balance. This is caused by the abundance of certain types of
roofs and the rarity of other types. Quantitative results show
that this issue heavily affects the quality of learned represen-
tations, depending on the chosen CL technique.

Index Terms— Contrastive Learning, Aerial Imagery,
Classification, Data Bias, Data Inbalance.

1. INTRODUCTION

Unsupervised contrastive learning is the subject of many re-
search papers from last year. This is mainly due to recent
breakthroughs in this area [1, 2, 3, 4]. It seeks to leverage the
vast quantity of unlabeled data available in the wild in order
to learn image representations that can be used efficiently in
various tasks. It has been proven that this technique can be
used successfully as a pretraining step, since it can learn fea-
tures that maximize the mutual information between the input
and the representations [1].

In this work, we apply some of these techniques to aerial
images of building rooftops. Examples from our dataset are
shown in Fig. 1 and our downstream task is the classification
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Fig. 1. Image examples of Aerial images used in our experi-
ments

of buildings roof types. The use of contrastive learning for
this task is justified by the abundance of unlabeled data avail-
able in the wild, while labeled examples are scarce due to the
prohibitive cost of labeling. One of the main problems that
we had to face is the fact that there is one predominant roof
type in all our aerial images: this makes labeled images very
imbalanced (see Fig. 2), but also causes a dataset bias in unla-
beled images. In our experiments, we observed this problem
to be a huge obstacle both for unsupervised pretraining and
supervised fine-tuning: the resulting networks failed at dis-
tinguishing under-represented roof types.

In Section 2 we propose an overview of different CL tech-
niques and in Section 3 we present the results obtained by
these techniques applied to aerial images for roof-type classi-
fication. Finally in Section 4, we discuss and confirm how the
performances obtained by SimCLR are essentially caused by
dataset bias.

The contributions of this work are:
1. An empirical observation of the strong impact of class

imbalance and dataset bias on unsupervised CL pre-
training strategies (especially SimCLR);

2. An empirical observation that the use of large mini-
batches during pretraining limits this problem, but is
prohibitive in terms of computational resources;

3. An empirical analysis and comparison of the perfor-



mances of recent CL methods in presence of imbal-
anced datasets, and a conclusion that nowadays BYOL
[4] is the most suited for our application.

2. OVERVIEW OF CONTRASTIVE LEARNING FOR
IMAGES REPRESENTATION TECHNIQUES

Despite all the work that has been done in developing the
contrastive and predictive coding paradigm [5, 6, 7], fully su-
pervised discriminative and generative techniques are still the
mainly used ones today. The first successful use of contrastive
learning is from van den Oord et al. [1].

Given an input sequence X = {x1, . . . , xN} of observa-
tions, the authors proposed an approach to learn a represen-
tation from it by predicting the future samples from a latent
space representation computed by an auto-regressive model.
Towards this aim, the authors seek to maximize the mutual
information between the latent representation of the input sig-
nal and the future samples in the sequences by minimizing the
CPC loss they introduced. They proved that using this tech-
nique, the network can learn usable representations for down-
stream tasks. Hénaff et al. [2] went a step further by adapting
the paradigm to images. In their work, they adapted the loss
by introducing negative samples that are taken from other lo-
cations in the image and other images from the mini-batch.

The second breakthrough was the introduction of Sim-
CLR [3] as a simpler framework for CL, which proposed
a new way of using the contrastive loss in order to encode
the invariance to transformations in the learned representa-
tions. This means that two transformed versions of same im-
ages must have close representations. Thus, given N images
{x1, . . . , xN}, for each xk we apply two different transfor-
mations to obtain two augmented versions of the same image
x2k and x2k−1. The CPC loss function then writes

LCPC =
1

2N

N∑
k=1

[`(2k−1, 2k) + `(2k, 2k−1)] (1)

with

`(i, j) = − log
exp(sim(zi, zj)/τ)∑
k 6=i exp(sim(zi, zk)/τ)

, (2)

where the variables sim(zi, zj) are the cosine similarities be-
tween the representation vectors zi := gencoder(xi) corre-
sponding to different elements within the same batch. This
idea was further developed in BYOL [4] , where the authors
added another branch to the model, using rolling means of
learned parameters at different training steps of the network.
This new branch is used to encode one of the transformations
of the original image and doesn’t count in the gradient calcu-
lations for the loss as a stop gradient operator is used on the
top of the branch. Lately, Caron et al. [8] presented SWAV,
which is an improvement to this paradigm that simultane-
ously clusters the data while enforcing consistency between

Fig. 2. Number of examples per class in the labeled dataset.

cluster assignments produced for different augmentations (or
“views”) of the same image, instead of comparing features
directly as in contrastive learning.

3. APPLICATION OF CL TECHNIQUES ON AERIAL
IMAGES DATASET

3.1. Implementation details

We decided to test different contrastive learning methods and
evaluate their performances using the test accuracy and F1-
score on the downstream classification task. We tested Sim-
CLR [3] and BYOL [4] and compared their results with the
ones we obtained when training our network in a fully super-
vised manner (fine-tuning using a pretrained model). We did
not include SWAV [8] in the comparison as its self-supervised
pretraining was very difficult to stabilize, probably due to its
sensibility to its many hyperparameters.

The experiments go as follows: we pre-train a randomly
initialized network on a large unlabeled dataset of aerial im-
ages using SimCLR or BYOL. Then, we add a classification
layer on the top of each obtained encoder network. We then
train the new obtained models to classify the representations
of the images. We use the classification accuracy as a score to
compare these approaches with the baseline. On this particu-
lar dataset there was a choice to be made about whether or not
freezing the weights learned in the first step before adding the
classification layer. We decided not to freeze these weights
for two main reasons:

1. It gives better results because we weren’t able to match
the batch sizes used in the reference papers. When a
small batch size is used the learned representations are
not linearly separable (see Fig 3). But they can be used
as good initialization for fine-tuning.

2. The supervised baseline is also allowed to finetune the
encoding network weights.



Fig. 3. T-SNE 2D projection of representations of the test set.
Left: SimCLR (before fine-tuning), Right: Supervised.

Accuracy/ F1-score
BYOL 0.86/0.73

SimCLR 0.79/0.51
Supervised 0.87/0.69

Table 1. Accuracy/F1-score for different CL algorithms com-
pared to the fully supervised baseline.

The architecture used for all the unsupervised experiments is
ResNet-34 [9]. We set the batch size to 256 and used the
Adam optimizer [10]. We trained the models for 200 epochs
for pretraining and 20 epochs for supervised fine-tuning.

3.2. Results

The results of this experiment are shown in Table 1. We can
see that BYOL performs well and yields results that are the
closest to the fully supervised baseline. In addition we ob-
serve that SimCLR performs poorly on this task. We believe
that this is due to the fact that we used a small batch size (256)
compared to the batch sizes used in [3]. In fact, When using
large mini-batch sizes, mini-batches are more likely to con-
tain a diverse set of images, which reduces the bias on each
batch of images. Van den Oord et al. [1] proved that larger
batch sizes result in larger mutual information between the
input xt+k and its representation ct

I(xt+k, ct) ≥ log(N)− LN , (3)

whereN is the batch size,LN is the CPC loss as defined in [1]
and I is the mutual information. In contrast, when small mini-
batch sizes are used the batches at each training step become
very biased. Especially considering the initial large bias in
the whole dataset. This translates into a lack of diversity in
images in each batch which results in similar images being
used as negative pairs, thus affecting the training process.

3.3. Sensibility to the used amount of labeled data

To analyze the robustness of these methods to the amount of
labeled data used in the supervised fine-tuning step, we fine-

tuned the self-supervised training models using varying ratios
of annotated data. The results are shown in Table 1 (for 100%
of labeled data) and Table 2. We can see that, despite the
better results obtained with the fully supervised training using
100% of the labeled data, the models pretrained using BYOL
perform better when using smaller amounts of labeled data
and that the gap closes as we increase its ratio. This confirms
the usefulness of using CL methods (and BYOL in particular
in our case) for tasks that rely on remote sensing data (e.g
Aerial Images) especially when we have a limited amount of
annotated data.

5% 10% 25% 50% 75%
BYOL 0.69/0.65 0.73/0.68 0.78/0.70 0.82/0.70 0.84/0.71

SimCLR 0.58/0.50 0.61/0.60 0.65/0.63 0.71/0.64 0.75/0.66
Supervised 0.60/0.62 0.64/0.64 0.71/0.66 0.79/0.67 0.85/0.68

Table 2. Classification accuracy/ F1-score obtained using dif-
ferent representation learning method varying the ratio of an-
notated data.

4. DISCUSSION: THE IMPORTANCE OF A
BALANCED BATCH SAMPLING

In order to verify the claim that SimCLR actually performs
badly due to the diversity problem, we did the following ex-
periment: Using only the labeled data, we trained the Sim-
CLR model two times, first using the full dataset, and second
using the full dataset but introducing a batch sampler that, for
each batch, ensures the class balance by oversampling less
represented classes and undersampling the most represented
ones. We then compared the learned representations using the
linear classification test score on the same test set after trans-
fer learning and fine-tuning. Results are reported in Table 3.
In addition, we plotted the confusion matrix of the classifi-
cation model when the SimCLR step was applied with and
without batch sampler (see Fig 4).

We observed that when we do not use the batch sampler in
pretraining, the classification model obtained after fine-tuning
is heavily affected by the class imbalance. It predicts mainly
the most represented classes. We also observed that using
the same technique for the classification step badly affects the
test accuracy. This is due to the fact that the most represented
class in the dataset is heavily penalized by batch sampling in
the supervised training procedure. From these results it seems
that controlling the class balance for the Contrastive Learning
step hugely affects the classification accuracy on learned rep-
resentations even with relatively small batch size.

To further confirm the effect of the batch sampling, we
realized the same experiments on CIFAR-10 dataset and on a
long-tailed version of the same dataset. This time using two
different batch sizes (200 and 800). The results are shown in
Table 4.

Here we see that, even if we do not attain the performance



For SimCLR For classification Test accuracy
Unsupervised - - 0.77

X X 0.67± 0.04
X - 0.85± 0.03

Supervised N/A - 0.87

Table 3. Linear classification accuracy comparison. The second and third columns represent whether we used the batch
sampling for each training step.

Dataset Batch size Supervised SimCLR without batch sampler SimCLR with batch sampler
LT CIFAR-10 200 0.91 0.82 0.86

CIFAR-10 200 0.90 0.86 0.88
LT CIFAR-10 800 0.89 0.86 0.88

CIFAR-10 800 0.86 0.86 0.85

Table 4. Classification accuracies after SimCLR pretraining on CIFAR-10 and Long-Tailed (LT) CIFAR-10 (factor = 0.5) with
and without batch sampler.

Fig. 4. Confusion matrices, from left: classification after Sim-
CLR with batch sampler, right: classification after SimCLR
without batch sampler.

of the fully supervised model, the batch sampling allows us to
largely improve the accuracy on the long-tailed dataset. Es-
pecially with the smaller batch size, as the improvement is
less meaningful when using 800 as batch size. The improve-
ment is also less meaningful on the default CIFAR-10 dataset.
We believe that this result confirms our intuition about the ef-
fect of class imbalance on the SimCLR training and opens
a promising research direction to find better ways to assure
more diversity in the batches. Possibly without the need of
the labels like in our experiment with batch sampling.

5. CONCLUSION AND FUTURE WORK

In this work we compared different CL techniques on an
aerial image dataset for roof-type classification. The char-
acteristic of this type of dataset being large bias and class
imbalance, we have empirically proven that these properties
can have a negative impact on certain contrastive learning
techniques (SimCLR in our case), Particularly when we use
small batch sizes, Although more advanced algorithms like
BYOL successfully overcome this type of issues. We believe

that these results open a promising research direction on how
to improve the reliability of CL algorithms on biased datasets
in order to attain the performances of fully supervised trained
models.
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