Deep Learning

Lecture 1: Introduction and the success of deep learning

Prof. Stéphane Gaïffas https://stephanegaiffas.github.io

Introduction and logistics

Your favorite professor:

- Pr. Stéphane Gaïffas
- LPSM, Univ. de Paris and DMA, Ecole normale supérieure
- Data Science, Machine Learning and Statistics
- https://stephanegaiffas.github.io

Your favorite website (bookmark it):

• https://stephanegaiffas.github.io/deep_learning

EDT M2 MIDS

How?

- 1/2 time spent in lectures
- 1/2 time on hands-on (tensorflow, pytorch, etc.)
- Assessment through homeworks by pairs of students
- Check regularly the course website https://stephanegaiffas.github.io/deep_learning to get up-to-date information

Deep learning. Why learning ?

What do you see?

Sheepdog or mop?

Chihuahua or muffin?

array([[[0.03921569,	0.03529412,	0.02352941,	1.],
[0.2509804 ,	0.1882353 ,	0.20392157,	1.],
[0.4117647 ,	0.34117648,	0.37254903,	1.],
[0.20392157,	0.23529412,	0.17254902,	1.],
[0.16470589,	0.18039216,	0.12156863,	1.],
[0.18039216,	0.18039216,	0.14117648,	1.]],
[[0.1254902 ,	0.11372549,	0.09411765,	1.	1,
[0.2901961]	0.2509804	0.24705882,	1.	i.
[0.21176471,	0.2 ,	0.20392157,	1.	i,
[0.1764706 ,	0.24705882,	0.12156863,	1.	1,
[0.10980392,	0.15686275,	0.07843138,	1.],
[0.16470589,	0.20784314,	0.11764706,	1.	11,
[[0.14117648,	0.12941177,	0.10980392,	1.	1,
[0.21176471,	0.1882353	0.16862746,	1.	i.
[0.14117648,	0.13725491,	0.12941177,	1.	i,
,				
[0.10980392,	0.15686275,	0.08627451,	1.	1,
[0.0627451 ,	0.08235294,	0.05098039,	1.	1,
[0.14117648,	0.2 ,	0.09803922,	1.	11,

...,

Writing a computer program that sees?

- Extracting semantic information requires models of high complexity, which cannot be designed by hand.
- However, one can write a program that learns the task of extracting semantic information.

Techniques used in practice consist of:

- defining a parametric model with high capacity
- optimizing its parameters, by "making it work" on the training data

- Very roughly reminiscent of biological systems for which the model (e.g., brain structure) and parameters (e.g., synaptic weights) are tuned through life experiences
- Deep learning encompasses software and hardware technologies allowing to scale-up to billions of model parameters and as many training examples

Applications and successes

Speech-to-text

•••

[Baidu 2014]

Computer vision

[Krizhevsky 2012]

[Ciresan et al. 2013]

[Faster R-CNN - Ren 2015]

[NVIDIA dev blog]

Computer vision

(d) benign

(e) benign

[Stanford 2017]

[Nvidia Dev Blog 2017]

Figure 1. Illumination and Pose invariance.

[FaceNet - Google 2015]

[Facial landmark detection CUHK 2014]

Natural Language Processing (NLP)

See also deep, learning

[Google Translate System - 2016]

[Socher 2015]

Natural Language Processing (NLP)

ulla

11:29 AM ***

Hey, Wynton Marsalis is playing this weekend. Do you have a preference between Saturday and Sunday?

[Google Inbox Smart Reply]

[Amazon Echo / Alexa]

Natural Language Processing (NLP)

ılla

11:29 AM •••

Hey, Wynton Marsalis is playing this weekend. Do you have a preference between Saturday and Sunday?

[Amazon Echo / Alexa]

However, most chatbots claiming "AI" do not use deep learning (yet?)

Computer vision + NLP

[VQA - Mutan 2017]

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

[Karpathy 2015]

Image translation

[DeepDream 2015]

[Gatys 2015]

[Ledig 2016]

Sampled celebrities [Nvidia 2017]

Text description description the set of the

This bird has wings that are brown and has a vellow belly A white bird with a black crown and yellow beak This bird is white, black, and brown in color, with a brown beak The bird has small beak, with reddish brown crown and gray belly

This is a small, black bird with a white breast and white on the wingbars. This bird is white black and yellow in color, with a short black beak

Stage-II images

StackGAN v2 [Zhang 2017]

Output • • • • • • • • • • • • • • •

Hidden Layer	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc
Hidden Layer	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc

Sound generation with WaveNet [DeepMind 2017]

Output • • • • • • • • • • • • • • • •

Hidden Layer	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc
Hidden Layer	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc

Sound generation with WaveNet [DeepMind 2017]

Which one is generated?

Tacotron 2 Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions, 2017

Language / Image models

Open-AI GPT-3 or DALL-E: https://openai.com/blog/dall-e/

TEXT PROMPT

an armchair in the shape of an avocado [...]

AI-GENERATED IMAGES

View more or edit prompt +

TEXT PROMPT

a store front that has the word 'openai' written on it [...]

AI-GENERATED IMAGES

View more or edit prompt↓

Genomics / biology

[Deep Genomics 2017]

Genomics / biology

T1037 / 6vr4 90.7 GDT (RNA polymerase domain)

T1049 / 6y4f 93.3 GDT (adhesin tip)

AlphaFold by DeepMind

Chemistry, physics

Chemistry, physics

Finite element simulator accelerated (pprox 100 fold) by a 3D convolutional network

Al in games

[Deepmind AlphaGo / Zero 2017]

AlphaGo/Zero: Monte Carlo Tree Search, Deep Reinforcement Learning, self-play

More examples in the next videos

(watch these later...)

Real-time object detection (Redmon and Farhadi, 2018)

ICNet for Real-Time Semantic Segmentation on High-Resolution...

Segmentation (Hengshuang et al, 2017)

Realtime Multi-Person 2D Human Pose Estimation using Part A...

Pose estimation (Cao et al, 2017)

Google DeepMind's Deep Q-learning playing Atari Breakout

Reinforcement learning (Mnih et al, 2014)

AlphaStar Agent Visualisation

Strategy games (Deepmind, 2016-2018)

Google's DeepMind AI Just Taught Itself To Walk

Learning to walk (2017)

- Single algorithm for learning! Nothing is hardcoded.
- Similar to a baby learning to walk.

Autonomous cars (NVIDIA, 2016)

Full Self-Driving

Autopilot (Tesla, 2019)

- A full build of Autopilot neural networks involves 48 networks that take 70,000 GPU hours to train .
- Together, they output 1,000 distinct tensors (predictions) at each timestep.

Speech Recognition Breakthrough for the Spoken, Translated W...

Speech recognition, translation and synthesis (Microsoft, 2012)

NeuralTalk and Walk, recognition, text description of the image ...

Auto-captioning (2015)

Google Assistant will soon be able to call restaurants and make ...

Speech synthesis and question answering (Google, 2018)

Artistic style transfer (Ruder et al, 2016)

A Style-Based Generator Architecture for Generative Adversarial ...

Image generation (Karras et al, 2018)

GTC Japan 2017 Part 9: AI Creates Original Music

Music composition (NVIDIA, 2017)

Behind the Scenes: Dali Lives

Dali Lives (2019)

Why does it work now?

Better algorithms and maths

More labeled data

Open source software and models

Computing power (GPUs, TPUs, etc.)

More computation power

More computation power

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)

More computation power

- 1 petaflop/s-day
- $= 10^{15}$ neural net operations per second for one day
- ${ullet}~=10^{20}$ operations
- + pprox 100 GPUs for one day
- $pprox 500 \mathrm{kWh}$
- https://twitter.com/eturner303/status/1223976313544773634

Bigger models

More data

The typical cost of a 4Tb hard disk is less than 100 USD (February 2020).

Open source libraries and frameworks

Automatic differentiation

• TensorFlow, MXnet, CNTK, Flux.jl

Dynamic and high level

• TensorFlow2, PyTorch, Chainer, MinPy, DyNet, etc.

- Good old Neural Networks, with more layers or modules
- Non-linear, hierarchical, abstract representations of data
- Very flexible models with any input/output types and sizes
- Differentiable functional programming

Typical machine learning system

Data independent

Supervised Learning

- Good old Neural Networks, with more layers or modules
- Non-linear, hierarchical, abstract representations of data
- Very flexible models with any input/output types and sizes
- Differentiable functional programming

Typical machine learning system

Data independent

Supervised Learning

- Good old Neural Networks, with more layers or modules
- Non-linear, hierarchical, abstract representations of data
- Very flexible models with any input/output types and sizes
- Differentiable functional programming

Deep learning (representation learning) system

Feature engineering versus representation learning

Most problems require feature engineering

• Create features by hand using domain knowledge / expertise

Deep learning is representation learning

- Data-driven learning of representations
- Mitigates (or even removes) feature engineering

Example

- Let us illustrate this on a toy example: polynomial logistic regression versus multi-layer perceptron
- We'll show this using the tensorflow playground and in today's lab

Playground time !

Let's go to https://playground.tensorflow.org

Thank you !