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Supervised learning
We have data with labeled samples 

Each  have an unknown joint distribution 

The  are input features. We have often .

The  are output labels. We have often  (a regression problem, the

labels do have a natural ordering) or  (a -class

classi�cation problem, the labels are categorical and do not have a natural
ordering)

The samples are supposed independent and identically distributed (i.i.d)

The training data can be of any �nite size .

In general, we do not have any prior information about .

In most cases,  is a vector, but it could be an image, a piece of text, a sample of

sound, a video

(x  , y  ), … , (x  , y  )1 1 n n

(x  , y  ) ∈ X × Yi i P

x  i X = Rd

y  i Y = R
Y = {1, … ,K} K

n

P

x  i
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Supervised learning
A predictor is a measurable function

where

with  the set of distributions on . Indeed, in classi�cation problems, we

often prefer to predict the distribution of  given 

instead of just predicting .

Training

Training or learning a predictor  is done using training data using the empirical risk

minimization principle

f : X →  Y

 = Y  or   = Δ(Y),Y Y

Δ(Y) Y
y x

p(y∣x) = P[Y = y∣X = x] ∈ Δ(Y)

y ∈ Y

f
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Empirical risk minimization
We train the predictor by minimization of the the empirical risk or training error

over  where

 is a parametrized set of functions. In linear methods we use the set of

functions .

 is a loss function

Examples

For linear least-squares we take  and use the square loss 

For logistic regression (for binary classi�cation where ) we take 

 and the logistic loss 

R  (f) =   ℓ(y  , f(x  ))n
n

1

i=1

∑
n

i i

f ∈ F

F
F = F  = {x ↦ x w : w ∈ R }linear

⊤ d

ℓ : Y ×  → RY

F = F  linear
ℓ(y, y ) =  (y − y )′

2
1 ′ 2

Y = {−1, 1}
F = F  linear ℓ(y, y ) = log(1 + e )′ −yy′
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Generalization
The aim of a predictor is generalization. We want the generalization error

to be as small as possible.

The empirical risk  is used as a way of approximating the generalization

error using the training samples

Most machine learning algorithms, including neural networks, use empirical
risk minimization

But only minimizing the training error usually leads to over�tting, most
methods require cross-validation for hyper-parameters tuning

Of course, many approaches: linear methods, kernels, k-NN, ensemble methods
(boosting, forests), etc. and unsupervised methods

R(f) = E  [ℓ(y, f(x))](x,y)∼P

R  (f)n
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Scikit-learn cheat-sheet

―――
From: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html 6 / 49
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History of neural networks
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In 1943, portrayed with a simple
electrical circuit by
neurophysiologist Warren
McCulloch and mathematician
Walter Pitts.

Donald Hebb took the idea further
by proposing that neural pathways
strengthen over each successive use,
especially between neurons that
tend to �re at the same time.

Modeling neurons
The idea of neural networks began as a model of how neurons work in the
brain.

Called connectionism and used connected circuits to simulate intelligent
behavior

―――

"A logical calculus of the ideas immanent in nervous activity", McCulloch and Pitts 1943  
"The organization of behavior: A neuropsychological theory", Hebb 2005
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Modeling neurons

Around 50', Frank Rosenblatt, a psychologist at Cornell, was working on
understanding the comparatively simpler decision systems present in the eye
of a �y, which underlie and determine its �ee response.

In an attempt to understand and quantify this process, he proposed the idea of
a Perceptron in 1958, calling it Mark I Perceptron.

It was a system with a simple input output relationship, modeled on a
McCulloch-Pitts neuron to explain the complex decision processes in a brain
using a linear threshold gate.

―――
Credits: Frank Rosenblatt, Mark I Perceptron operators' manual, 1960. 8 / 49

https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.png


The Mark I Perceptron was the �rst
implementation of the perceptron
algorithm.

The machine was connected to a
camera that used 20x20 photocells
to produce a 400-pixel image.

First perceptron
A McCulloch-Pitts neuron takes in inputs, takes a weighted sum and returns 0 if the
result is below threshold and 1 otherwise.

A model motivated by biology, with  being synaptic weights and  and  �ring

rates.

f(x) =   {1
0

if   w  x  + b ≥ 0∑i i i

otherwise

w  i x  i f
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The Mark I Percetron (Frank Rosenblatt).
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The Perceptron

Perceptron Research from the 50's & 60's, clipPerceptron Research from the 50's & 60's, clip

11 / 49

https://www.youtube.com/watch?v=cNxadbrN_aI


Perceptron model and algorithm
It uses the following model

where  are inputs,  are weights,  is a bias and activation 

How to �nd  ?

The perceptron algorithm (�rst iterative learning algorithm)

To ease notations, put  and 

Start with 

Repeat over all samples:

1. if  put 

2. otherwise do not modify 

f(x) = σ(  w  x  + b)
j

∑ j j

x  j w  j b σ(z) = 1(z > 0)

(w, b)

w = [w  ⋯w  b]1 d x  = [x  1]i i

w ← 0

y  x  w < 0i i
⊤ w ← w + y  x  i i

w
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Perceptron model and algorithm
This procedure can be seen as a stochastic gradient descent method

Indeed, a sample  is missclassi�ed if  (labels  or ), so we can

consider the goodness-of-�t

But  so that a stochastic gradient descent step write

where we sample uniformly at sample  among .

We use  in the Perceptron algorithm

i y  x  w < 0i i
⊤ −1 +1

F (w) =  F  (w)  where  F  (w) = −y  x  w

i : y  x  w<0i i
⊤

∑ i i i i
⊤

∇F  (w) = −y  x  i i i

w ← w − η∇F  (w) = w + ηy  xi i i

i {i : y  x  w < 0}i i
⊤

η = 1
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Let  and  be the optimal

hyperplane of margin

with . We have the following theorem.

Perceptron model and algorithm

Theorem (Block 1962, Novikoff 1963)

Assume that the training dataset  is linearly separable

(meaning that ). Put , then the number of steps in the perceptron

algorithm is bounded by

Exercice: prove it ! (  10 lines)

R = max ∣x  ∣i i w⋆

γ =  y  x  w
i

min i i
⊤ ⋆

∣w ∣ = 1⋆

(x  , y  ), … , (x  , y  )1 1 n n

γ > 0 w  ← 00

k ≤  .
γ2

1 + R2

≈
―――
Credits: From http://image.diku.dk/%20kstensbo/notes/perceptron.png 14 / 49
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History
The Perceptron project led by Rosenblatt was funded by the US Of�ce of Naval
Research.

 

"The Navy revealed the embryo of an electronic computer today that it expects will
be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

Later perceptrons will be able to recognize people and call out their names and
instantly translate speech in one language to speech and writing in another

language, it was predicted."

Press conference, 7 July 1958, New York Times.

 

For an extensive study of the perceptron, see [Principles of neurodynamics.
perceptrons and the theory of brain mechanisms, Rosenblatt 1961]
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Moving forward: (M)ADALINE
In 1959 at Stanford, Bernard Widrow and Marcian Hoff developed AdaLinE
(ADAptive LINear Elements) and MAdaLinE (Multiple AdaLinE), the latter
being the �rst network successfully applied to a real world problem

Main differences with the perceptron

The loss is the square difference between the sum of the weighted input and
the output

The optimization procedure is a gradient descent: all computations are trivial
since the weighted sum is linear as a function of weights

―――
Adaptive switching circuits, Bernard Widrow and Hoff 1960 16 / 49



Applications

Speech and pattern recognition [2]

Weather forecasting [3]

Adaptive �ltering and adaptive signal
processing [4]

MADALINE
Many Adalines: network with one hidden layer composed of many Adaline units. [1]

―――

[1] "Madaline Rule II: a training algorithm for neural networks", Winter and Widrow 1988 
[2] "Real-Time Adaptive Speech-Recognition System", Talbert et al. 1963 
[3] "Application of the adaline system to weather forecasting", Hu 1964 
[4] "Adaptive signal processing", Bernard and Samuel 1985
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Further
The kernel perceptron algorithm was already introduced by [1]

Margin bounds for the Perceptron algorithm in the general non-separable case
were proven by [2] and by [3] who extended existing results and gave new L1
bounds

―――

[1] "Theoretical foundations of the potential function method in pattern recognition learning", Aizerman 1964 
[2] "Large margin classi�cation using the perceptron algorithm", Freund and Schapire 1999 
[3] "Perceptron mistake bounds", Mohri and Rostamizadeh 2013
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AI Winter
1969: Minsky and Papert exhibit the fact that it was dif�cult for perceptron to
detect parity (number of activated pixels) and connectedness (are the pixels
connected?). Besides, it was known that they cannot represent simple non linear
function such as XOR function, see [1]

There is no reason to suppose that any of [the virtue of perceptrons] carry over to
the many-layered version. Nevertheless, we consider it to be an important research
problem to elucidate (or reject) our intuitive judgement that the extension is sterile.
Perhaps some powerful convergence theorem will be discovered, or some profound

reason for the failure to produce an interesting "learning theorem" for the
multilayered machine will be found.

Minsky, Papert

The starting point of "AI winter": a signi�cant decline in funding of neural
network research

In [2]: more about the controversy between Rosenblatt and Minsky, Papert

―――

[1] "Perceptrons: an introduction to computational geometry", Minsky and Papert 2017 
[2] "A sociological study of the of�cial history of the perceptrons controversy", Olazaran 1996.
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AI Winter
Perceptron model is de�ned as

where  is the heavyside activation. Assuming boolean inputs 

 it can implement

but not the XOR which is not linearly separable:  if  or if 

 and  otherwise.

Question: �nd a neural network with one hidden layer that implements the xor (it
exists...)

f(x) = σ(  w  x  + b ≥ 0)
i

∑ i i

σ(z) = 1(z > 0)
x  ∈ {0, 1}i

or(a, b) = 1(a + b − 0.5 ≥ 0)

and(a, b) = 1(a + b − 1.5 ≥ 0)

not(a) = 1(−a + 0.5 ≥ 0)

xor(a, b) = 1 a = b = 0
a = b = 1 xor(a, b) = 0
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Main building blocks
The MLP, computational graphs, SGD and backpropagation
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add sign

w1

w2

w3

x1

x2

x3

b

h

*

*

*

The computation of

can be represented as a
computational graph where

white nodes correspond to
inputs and outputs;

red nodes correspond to
model parameters;

blue nodes correspond to
intermediate operations.

Computational graphs

f(x) = σ(  w  x  + b)
i

∑ i i
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Computational graphs
In terms of tensor operations,  can be rewritten as

for which the corresponding computational graph of  is:

 

dot add sign

w b

x h

f

f(x) = σ(x w + b),⊤

f
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From perceptron to logistic unit
The sigmoid function looks a lot like the heavyside function

But sigmoid has a non-�at gradient (and comes from sound statistical
arguments).

Important. The  unit is the primitive of all neural networks!

dot add sign

w b

x h

x ↦ σ(x w + b)⊤
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Stochastic gradient descent (SGD)
The empirical risk minimization principle leads to a goodness-of-�t of the form

where  is the considered model (NN architecture) and  encompasses all the

trainable weights. Its gradient writes

This is called a full gradient or batch gradient: it uses all the training data
(complexity grows linearly with the size  of the dataset)

This is baaaaad if  is large !

Idea: this empirical risk is an approximation of the expected risk, no need to
minimize it with great accuracy

F (θ) =   ℓ(y  , f(x  ; θ))
n

1

i=1

∑
n

i i

f θ

∇F (θ) =   ∇ℓ(y  , f(x  ; θ))
n

1

i=1

∑
n

i i

n

n
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Stochastic gradient descent (SGD)
Stochastic gradient descent uses instead stochastic gradients

where  is sampled uniformly at random (at each step) with a mini-

batch size . One step of vanilla SGD is

where  is the learning rate and  is the mini-batch used in the -th iteration

Iteration complexity is independent of .

The stochastic process  depends on the mini-batches

sampled at each iteration

In practice, shuf�e  and use sequentially , 

, etc.

  ∇ℓ(y  , f(x  ; θ))
∣B∣
1

i∈B

∑ i i

B ⊂ {1, … ,n}
m = ∣B∣ ≪ n

θ  ← θ  − η    ∇ℓ(y  , f(x  ; θ  ))t+1 t t ∣B  ∣t

1

i∈B  t

∑ i i t

η  t B  t t

n

{θ  : t = 1, 2, …}t

{1, … ,n} B  = {1, … ,m}t

B  = {m + 1, … , 2m}t+1
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Batch gradient descent Stochastic gradient descent

Stochastic gradient descent (SGD)

Iteration complexity is independent of .

The stochastic process  depends on the mini-batches

sampled at each iteration

In practice, shuf�e  and use sequentially , 

, etc.

θ  ← θ  − η    ∇ℓ(y  , f(x  ; θ  ))t+1 t t ∣B  ∣t

1

i∈B  t

∑ i i t

n

{θ  : t = 1, 2, …}t

{1, … ,n} B  = {1, … ,m}t

B  = {m + 1, … , 2m}t+1
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Stochastic gradient descent (SGD)
Why is stochastic gradient descent a good idea?

Stochastic gradients are unbiased approximations of the batch gradient
(uniform sampling of the mini-batch)

Many guarantees on SGD and more advanced variants in the convex case

If training is limited to single pass over the data, then SGD directly minimizes
the expected risk

Bottou and Bousquet [1]: stochastic optimization algorithms (e.g., SGD) yield
the best generalization performance (in terms of excess error) despite being
the worst optimization algorithms for minimizing the empirical risk

―――

[1] Bottou, L. and Bousquet, O. (2008). "The tradeoffs of large scale learning."" In Advances in neural information processing systems (pp. 161-168)
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Multi-layer perceptron
So far we considered the logistic unit , where , 

,  and .

These units can be composed in parallel to form a layer with  outputs:

where , , ,  and where  is applied entry-

wise.

We also say that the width or number of units/neurons of the layer is . It's the

output size of the layer. 

matmul add

W b

x hsigma

h = σ(w x + b)⊤ h ∈ R
x ∈ Rd w ∈ Rd b ∈ R

q

h = σ(W x + b)⊤

h ∈ Rq x ∈ Rd W ∈ Rd×q b ∈ Rq σ(⋅)

q
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Multi-layer perceptron
Similarly, layers can be composed in series, such that:

where  denotes the model parameters .

This model is the multi-layer perceptron

Also known as the fully connected feedforward network.

matmul add matmul add matmul add...sigmasigmax h1 h2 hL

W1 WLW2b1 b2 bL

sigma

h0

h1

hL

f(x; θ) = ŷ

= x

= σ(W  h  + b  )1
⊤

0 1

⋮

= σ(W  h  + b  )L
⊤

L−1 L

= h  L

θ {W  , b  : k = 1, … ,L}k k
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Output layer
For binary classi�cation, the width of the last layer  is set to , which

results in a single output  that models the probability 

.

For -class classi�cation with , the activation function  in the last

layer is generalized to produce a vector  where  is the probability

simplex in  for the probability estimates  for 

.  

 
This activation is the  function, where its -th output is de�ned as

for .

L q = 1
h  ∈ [0, 1]L

P[Y = 1∣X = x]

C C > 2 σ

h  ∈ ΔL Δ
RC P[Y = c∣X = x]

c = 1, … ,C

softmax i

softmax(z)  =  ,i
 exp(z  )∑c=1

C
c

exp(z  )i

c = 1, … ,C

30 / 49



We need to compute gradients !
To minimize  with SGD, given a mini-batch , we need to compute

(stochastic) gradients

with respect to 

Therefore, we require the evaluation of the (total) derivatives

of  with respect to all model parameters , , for 

These derivatives can be evaluated automatically from the computational
graph of  using automatic differentiation

F (θ) B

∇F (θ) =   ∇ℓ(y  , f(x  ; θ))B

∣B∣
1

i∈B

∑ i i

θ

 and  

dW  k

dFB

db  k

dFB

FB W  k bk k = 1, … ,L

F
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Chain rule

Let us consider a 1-dimensional output composition , such thatf ∘ g

  

y

u
= f(u)

= g(x) = (g  (x), ..., g  (x)).1 m
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Chain rule
The chain rule states that 

For the total derivative, the chain rule generalizes to

Reverse automatic differentiation

Since a neural network is a composition of differentiable functions, the total
derivatives of the loss can be evaluated backward, by applying the chain rule
recursively over its computational graph.

The implementation of this procedure is called reverse automatic
differentiation or backpropagation

(f ∘ g) = (f ∘ g)g .′ ′ ′

 

dx
dy

=    

k=1

∑
m

∂u  k

∂y

recursive case

  

dx
du  k
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Backpropagation
Let us consider a simpli�ed 2-layer MLP and the following loss function:

where for , ,  and :

In the forward pass, many intermediate values are computed and kept in memory
from inputs to outputs, which results in the annotated computational graph below:

F (W  ,W  ) = ℓ(y,  ) + λ(∥W  ∥  + ∥W  ∥  )1 2 ŷ 1 2
2

2 2
2

x ∈ Rd y ∈ R W ∈ R1
d×q W  ∈ R2

q

 = f(x;W  ,W  ) = σ(W  σ(W  x))ŷ 1 2 2
⊤

1
⊤
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Backpropagation
The total derivative can be computed through a backward pass, by walking through
all paths from outputs to parameters in the computational graph and accumulating
the terms. For example, for  we have: dW  1

dℓ

 

dW  1

dℓ

 

dW  1

du  8

=  +   

∂u  8

∂ℓ
dW  1

du8

∂u  4

∂ℓ
dW  1

du  4

= ...

35 / 49



Backpropagation
Let us zoom in on the computation of  and its derivative with respect to :

Forward pass: values , ,  and  are computed by traversing the graph

from inputs to outputs given ,  and .

Backward pass: by the chain rule we have

Note how evaluating partial derivatives requires the intermediate values
computed during the forward pass

 ŷ W  1

u  1 u  2 u  3  ŷ

x W  1 W  2

 

dW  1

d  ŷ
=    

∂u  3

∂  ŷ

∂u  2

∂u  3

∂u  1

∂u  2

∂W  1

∂u  1

=    

∂u  3

∂σ(u  )3

∂u  2

∂W  u  2
T

2

∂u  1

∂σ(u  )1

∂W  1

∂W  x1
T
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Backpropagation
This algorithm is called automatic differentiation or backpropagation

Often mixed up with the optimization algorithm: backpropagation does not
optimize, it just helps to compute gradients

It's the core of any deep learning library: a grammar of differentiable blocks
that can be combined together

An equivalent procedure can be de�ned to evaluate the derivatives in forward
mode, from inputs to outputs

Since differentiation is a linear operator, automatic differentiation can be
implemented ef�ciently in terms of tensor operations
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Vanishing gradients
Training deep MLPs with many layers has for long (pre-2011) been very dif�cult due
to the vanishing gradient problem.

Small gradients slow down, and eventually kills "learning" with stochastic
gradient descent.

Mitigated the use of deep architectures (many layer stacked)

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010). 
Gradients for layers far from the output vanish to zero.
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Let us consider a simpli�ed 3-layer MLP, with , such that

Under the hood, this would be evaluated as

and its derivative  as

x,w  ,w  ,w  ∈ R1 2 3

f(x;w  ,w  ,w  ) = σ w  σ w  σ w  x .1 2 3 ( 3 ( 2 ( 1 )))

  

u  1

u  2

u  3

u  4

u  5

 ŷ

= w  x1

= σ(u  )1

= w  u  2 2

= σ(u  )3

= w  u  3 4

= σ(u  )5

 dw  1

dŷ

 

dw  1

d  ŷ
=      

∂u  5

∂  ŷ

∂u  4

∂u  5

∂u  3

∂u  4

∂u  2

∂u  3

∂u  1

∂u  2

∂w  1

∂u  1

=  w   w   x
∂u  5

∂σ(u  )5
3 ∂u  3

∂σ(u  )3
2 ∂u  1

∂σ(u  )1
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The derivative of the sigmoid activation function  is:

Notice that  for all .

σ

 (x) = σ(x)(1 − σ(x))
dx
dσ

0 ≤  (x) ≤  dx
dσ

4
1 x
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Assume that weights  are initialized randomly from a Gaussian with

zero-mean and small variance, such that with high probability .

Then,

This implies that the gradient  exponentially shrinks to zero as the number of

layers in the network increases.

Hence the vanishing gradient problem.

In general, bounded activation functions (sigmoid, tanh, etc) are prone to the
vanishing gradient problem.

Note the importance of a proper initialization scheme.

w  ,w  ,w  1 2 3

−1 ≤ w  ≤ 1i

 =      x
dw  1

d  ŷ

≤  4
1

  

∂u  5

∂σ(u  )5

≤1

 w  3

≤  4
1

  

∂u  3

∂σ(u  )3

≤1

 w  2

≤  4
1

  

∂u  1

σ(u  )1

 dw  1

d  ŷ
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Recti�ed linear units
Instead of the sigmoid activation function, modern neural networks are for most
based on recti�ed linear units (ReLU) (Glorot et al, 2011):

ReLU(x) = max(0,x)
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Note that the derivative of the ReLU function is

For , the derivative is unde�ned. In practice, it is set to zero.

 ReLU(x) =   

dx
d {0

1
if x ≤ 0
otherwise

x = 0

43 / 49



Therefore,

This solves the vanishing gradient problem, even for deep networks! (provided
proper initialization)

Note that:

The ReLU unit dies when its input is negative, which might block gradient
descent.

This is actually a useful property to induce sparsity.

This issue can also be solved using leaky ReLUs, de�ned as

for a small  (e.g., ).

 =  w   w   x
dw  1

d  ŷ

=1

  

∂u  5

∂σ(u  )5
3

=1

  

∂u  3

∂σ(u  )3
2

=1

  

∂u  1

∂σ(u  )1

LeakyReLU(x) = max(αx,x)

α ∈ R+ α = 0.1
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Modern deep learning is like
LEGO®
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LEGO® Deep Learning
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Yann LeCun, 2018.

People are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using
some form of gradient-based optimization.
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DL as an architectural language

47 / 49



DL as an architectural language

The toolbox

―――
Credits: Oriol Vinyals, 2020. 48 / 49

https://twitter.com/OriolVinyalsML/status/1212422497339105280


LEGO® Creator Expert

 

―――
Credits: Vinyals et al, 2019. 49 / 49

https://www.nature.com/articles/s41586-019-1724-z


Thank you !
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