
Deep Learning
Lecture 3: Some hyperparameters, regularization techniques and practical

recommendations

Prof. Stéphane Gaïffas
https://stephanegaiffas.github.io

1 / 41

https://stephanegaiffas.github.io/

Agenda for today
1. Activation functions

2. Output units and losses

3. Weight initialization

4. Regularization by penalization

5. Regularization by Dropout

6. Batch normalization, layer normalization

7. Early stopping

8. Final practical recommendations

1 / 41

Activation functions

1 / 41

sigmoid activation

Sigmoid function

Comments

Sigmoid is not centered at zero

"Saturated" function: gradient

killer

Exp more computationally expensive
(although negligible in general)

Sigmoid

σ(x) =

1 + e−x

1

⇒

2 / 41

 activation

Hyperbolic tangent function

It's a rescaling in of the sigmoid

Comments

Centered at zero

"Saturated" function: gradient

killer

Exp more computationally expensive
(although negligible in general)

Tanh

tanh

tanh(x) = = 2σ(2x) − 1
e + ex −x

e − ex −x

[−1, 1]

⇒

3 / 41

ReLU activation

ReLU (positive part)

Comments

Introduced in [1]

Not a saturated function (piecewise
linear) and sparse output

Typically leads to architectures that
can be trained faster than sigmoid or
tanh (since it mitigates vanishing
gradient)

Related to biology [2], Biologically
plausible

Recti�ed Linear Unit (ReLU)

ReLU(x) = max(x, 0)

―――

[1]: "Imagenet classi�cation with deep convolutional neural networks", Krizhevsky et al. 2012
[2]: "Deep sparse recti�er neural networks", Glorot, Bordes, et al. 2011

4 / 41

Leaky ReLU activation with

Activations of the form

Leaky ReLU

It's

Introduced in [1]

Absolute Value Recti�cation

It's

Introduced in [2]

Parametric ReLU

 is optimized (learned activation)

Introduced in [3]

Variations around ReLU

α = 0.1

x ↦ max(αx,x)

α = 0.1

α = −1

α

―――

[1]: "Recti�er nonlinearities improve neural network acoustic models", Maas et al. 2013
[2]: "What is the best multi-stage architecture for object recognition?", Jarrett et al. 2009
[3]: "Empirical evaluation of recti�ed activations in convolutional network", Xu et al. 2015

5 / 41

ELU activation with

Exponential Linear Unit

Negative saturation regime, closer to
zero-mean output

 typically set to 1.0

Robustness to noise [1]

ELU

α = 1

x ↦ {x

α(e − 1)x

 if x ≥ 0
 otherwise

α

―――

[1]: Fast and accurate deep network learning by exponential linear units (elus)”, Clevert et al. 2015
6 / 41

Maxout activation with

Maxout unit

Replaces a dense layer

where by

where and

and if over the extra dimension

(max of coordinates)

Number of parameters

Learns piecewise linear functions up
to pieces [1], [2]

Generalizes ReLU and leaky ReLU
with

Maxout

k = 3

h = ReLU(Wx + b)

W ∈ Rq×d

h = max(Wx +B)

W ∈ Rk×q×d B ∈ Rk×q

max
k

×k

k

k = 2
―――

[1] "Maxout networks", Goodfellow, Warde-Farley, et al. 2013
[2] "Deep maxout neural networks for speech recognition", Cai et al. 2013

7 / 41

Swish activation for

Swish activation

Introduced in [1]

Interpolates between the ReLU and
the identity

Non-monotonic which seems to be
an important feature

Swish

α = 0.1, 1, 10

x ↦

1 + e−αx

x

―――

[1] "Searching for activation functions", Ramachandran et al. 2017
8 / 41

Conclusion on activation functions
Use ReLU (or Swish ?)

You can try Leaky ReLU, maxout, ELU

You can try tanh, but do not expect too much

Do not use sigmoid (unless you have reasons to)

9 / 41

Output units and losses

9 / 41

Output units and losses
Linear output unit

For multivariate regression with a label

where , and .

It's a standard multivariate least-squares regression using as input features

Sigmoid output unit

For binary classi�cation with a label

where , and .

It's a standard logistic regression using as input features

y ∈ RK

 = W h + b with loss ℓ(y,) = ∥y − ∥ y ⊤ y y 2
2

W ∈ Rd×K b ∈ RK h ∈ R

h

y ∈ {−1, 1}

 = σ(w h + b) with loss ℓ(y,) = log(1 + e)y ⊤ y −y y

w ∈ Rd b ∈ R h ∈ Rd

h

10 / 41

Output units and losses
Softmax output unit

For K-class classi�cation with a label

where and and where

and

It's a standard softmax regression also known as multi-class logistic regression
using as input features

y ∈ {1, … ,K}

 = softmax(W h + b) where ℓ(y,) = crossentropy(y,)y ⊤ y y

W ∈ Rd×K b ∈ RK

softmax(z) = [⋯]
 e∑k=1

K z k

ez 1

 e∑k=1
K z k

ez K

crossentropy(y,) = − 1(k = y) log()y

k=1

∑
K

yk

h

11 / 41

Output units and losses
The cross-entropy is very popular

Least-squares loss should not be used with softmax outputs [1]

There's a bunch of other losses (mean absolute error, hinge loss, Huber loss, ad-
hoc losses in computer vision, loss combinations, etc.)

More complex models than softmax or least-square error: conditional Gaussian
mixtures (multimodal)

Some losses for binary classi�cation

y

―――

[1]: Probabilistic interpretation of feedforward classi�cation network outputs, with relationships to statistical pattern recognition”, Bridle 1990
12 / 41

Weight initialization

12 / 41

Weight initialization
In convex problems, provided a good learning rate, convergence is guaranteed
regardless of the initial parameter values.

In the non-convex regime, initialization is much more important!

Little is known on the mathematics of initialization strategies of neural
networks

What is known: initialization should break symmetry and the scale of weights is
important

Have a look at: https://www.deeplearning.ai/ai-notes/initialization/

Bad ideas

set all weights and biases to the same value (for instance): all neurons are

going to be the same, in each iteration, too much symmetry

small random numbers: might work for small networks but not for deeper
networks, we end-up with no activation at all

big random numbers: saturating phenomenon and over�ow

0

13 / 41

https://www.deeplearning.ai/ai-notes/initialization/

Variances in the forward pass
A �rst strategy is to initialize the network parameters such that activations
preserve the same variance across layers

Intuitively, this ensures that the information keeps �owing during the forward
pass, without reducing or magnifying the magnitude of input signals
exponentially

Let us assume that

we are in a linear regime at initialization (e.g., the positive part of a ReLU or the
middle of a sigmoid),

weights are initialized i.i.d,

biases are initialized to be ,

input features are i.i.d, with a variance denoted as .

w ij
l

b l 0

V[x]

14 / 41

Variances in the forward pass
Then, the variance of the activation of unit in layer is

where is the width of layer and for all . Since the weights

 at layer share the same variance and the variance of the activations in

the previous layer are the same, we can drop the indices and write

Therefore, the variance of the activations is preserved across layers when

This condition is enforced in LeCun's uniform initialization, which is de�ned as

h i
l i l

V[h] = V[w h] = V[w]V[h]i
l

j=1

∑
q l−1

ij
l

j
l−1

j=1

∑
q l−1

ij
l

j
l−1

q l l h = x j
0

j j = 1, … , p
w ij

l l V[w]l

V[h] = q V[w]V[h].l
l−1

l l−1

V[w] = 1/q ∀l.l
l−1

w ∼ Uniform([− ,]).ij
l 3/q l−1 3/q l−1

15 / 41

Variances in the backward pass
A similar idea can be applied to ensure that the gradients �ow in the backward pass
(without vanishing nor exploding), by maintaining the variance of the gradient with
respect to the activations �xed across layers.

Under the same assumptions as before,

V [
dh i

l

d ŷ] = V [
j=1

∑
q l+1

dh j
l+1

d ŷ

∂h i
l

∂h j
l+1]

= V w [
j=1

∑
q l+1

dh j
l+1

d ŷ
j,i
l+1]

= V V w

j=1

∑
q l+1 [

dh j
l+1

d ŷ] [ji
l+1]

16 / 41

Variances in the backward pass
If we further assume that

the gradients of the activations at layer share the same variance

the weights at layer share the same variance ,

then we can drop the indices and write

Therefore, the variance of the gradients with respect to the activations is preserved
across layers when

l

l + 1 V w[l+1]

V = q V V w .[
dhl

dŷ] l+1 [
dhl+1

d ŷ] [l+1]

V w = ∀l[l]
q l

1

17 / 41

Xavier initialization
We have derived two different conditions on the variance of :

A compromise is the Xavier initialization, which initializes randomly from a

distribution with variance

For example, normalized initialization is de�ned as

wl

V w = and V w = [l]
q l−1

1
[l]

q l

1

wl

V w = = .[l]
 2

q +q l−1 l

1
q + q l−1 l

2

w ∼ Uniform − , .ij
l ([

q + q l−1 l

6

q + q l−1 l

6])

18 / 41

Examples of initializations
Xavier initialization [1]

Gaussian initialization [2]

Initialize bias to zero and weights randomly using

LeCun's uniform initialization

w ∼ Uniform − , .ij
l ([

q + q l−1 l

6

q + q l−1 l

6])

w ∼ Normal()ij
l

q l−1

 2

w ∼ Uniform − , .ij
l ([

q l−1

3

q l−1

3])
―――

[1]: "Understanding the dif�culty of training deep feedforward neural networks" Glorot and Bengio 2010
[2]: "Delving deep into recti�ers: Surpassing human-level performance on imagenet classi�cation", He et al. 2015
[3]: "All you need is a good init", Mishkin and Matas 2015

19 / 41

Impact of a careful initialization

―――
Credits: Glorot and Bengio, Understanding the dif�culty of training deep feedforward neural networks, 2010. 20 / 41

http://proceedings.mlr.press/v9/glorot10a.html

Impact of a careful initialization

―――
Credits: Glorot and Bengio, Understanding the dif�culty of training deep feedforward neural networks, 2010. 21 / 41

http://proceedings.mlr.press/v9/glorot10a.html

Regularization by penalization

21 / 41

Regularization to avoid over�tting

We usually need to impose some constraints over the parameters space to
avoid over�tting

22 / 41

Avoid over�tting
Many different manners to avoid over�tting

Penalization: Ridge, L1, etc. where we replace by for

some penalization function

Weights sharing: such as with convolutional neural networks, where we reduce
the parameters space by imposing to explicit constraints

Dropout: kill at random some neurons during optimization, and predict with
the full network

Batch normalization: renormalize a layer inside a mini-batch, so that the
network does not over�l on this particular batch

Early stopping: stop the optimization procedure whenever the validation error
does not decrease for a certain number of epochs

F (θ) F (θ) + pen(θ)
pen

23 / 41

Penalization
A penalization can be applied on each layer individually or all the layers

Most standard one is Ridge, see [1] and [2] also called weight decay in deep learning
literature where

with a penalization hyper-parameter . We can also use penalization [3]

or elastic-net [4]

with the extra hyper-parameter

pen(W) = ∥W∥

2
λ

2
2

λ > 0 ℓ 1

pen(W) = λ∥W∥ 1

pen(W) = λ((1 − α) ∥W∥ + α∥W∥)
2
λ

2
2

1

α ∈ [0, 1]
―――

[1]: "Ridge regression: Biased estimation for nonorthogonal problems", Hoerl and Kennard 1970
[2]: "Lecture notes on ridge regression", Wieringen 2015
[3]: "Regression shrinkage and selection via the lasso", Tibshirani 1996
[4]: "Regularization and variable selection via the elastic net", Zou and Hastie 2005

24 / 41

Regularization by Dropout

24 / 41

Dropout

Dropout [1] refers to dropping out units in a neural network: temporarily removing
it from the network, along with its incoming and outgoing connections.

Typically, each unit is independently retained with a probability

 for hidden units

 for input units

p = 0.5

p = 0.8
―――

[1]: "Improving neural networks by preventing co-adaptation of feature detectors", Hinton et al. 2012
25 / 41

Dropout
During training: randomly remove units from the network. Update parameters as
normal, leaving dropped-out units unchanged.

For each sample in a mini-batch, we sample a thinned network by dropping out
units

Forward and back-propagation for that sample are done only on this thinned
network. Any sample which does not use a parameter contributes a gradient of
zero for that parameter

26 / 41

Dropout
During testing (evaluation only): we need to account for this by rescaling.

If a unit is retained with probability during training, the outgoing weights of

that unit are multiplied by at test time

This ensures that for any hidden unit the expected output (w.r.t the dropping
distribution used at training time) is the same as the actual output at evaluation
time

p

p

27 / 41

Dropout
Once again, with dropout we train as follows

Training: Inside one epoch, for a mini-batch of size

Sample masks of iid Bernoulli random variables with probability per node

of the network (inner and input nodes but not output nodes).

Usually for hidden nodes and for input nodes

For each one of the samples in the mini-batch:

1. Do a forward pass on the masked network

2. Compute back-propagation on the masked network

3. Compute the mini-batch averaged gradient

The optimizer updates the parameters as usual (nothing is changed here)

Prediction: Use all neurons in the network with the weights learned during training
multiplied by the used during training.

m

m p

p = 0.5 p = 0.8

m

p

28 / 41

Dropout as an ensemble method
Reminiscent of columns sub-sampling in random forests

Roughly, Dropout averages different neural networks

Different can mean:

Randomizing the training data (by dropping input units)

Building and combining different network architectures

see [1], [2]

Another strategy is to drop weights and not whole units [3]

Also, we can understand dropout as some form of penalization (next)

―――

[1]: "Fast dropout training", Wang and Manning 2013
[2]: "Dropout: A simple way to prevent neural networks from over�tting", Srivastava et al. 2014"
[3]: "Regularization of neural networks using dropconnect", Wan et al. 2013

29 / 41

Dropout as penalization
Consider linear regression with a matrix of features and labels

 and the least-squares objective

Here, Dropout drops inputs by replacing by where is a matrix

containing iid random variables.

The objective would become

where is the Hadamard (entry-wise) product. An easy computation shows

that this reduces to

where which rewrites by setting

X ∈ Rn×d

y ∈ Rn w ↦ ∥y −Xw∥ 2
2

X B⊙X B
Bernoulli(p)

F (w) = E [∥y − (B⊙X)w∥]B∼Bernoulli(p) 2
2

⊙

F (w) = ∥y − pXw∥ + p(1 − p)∥Σw∥ 2
2

2
2

Σ = diag(X X)⊤ 1/2 w ← pw

F (w) = ∥y −Xw∥ + ∥Σw∥ 2
2

p

1 − p
2
2

―――

More details in "Dropout: A simple way to prevent neural networks from over�tting", Srivastava et al. 2014"
30 / 41

Batch normalization, layer
normalization

30 / 41

Batch normalization
The network converges faster if its input are scaled (mean, variance) and
decorrelated [1]

It's hard to decorrelate variables: requires to compute the whole covariance
matrix [2]

The previous weight initialization strategies rely on preserving the activation
variance constant across layers, under the initial assumption that the input
feature variances are the same, namely for any feature

Aims and ideas

Improving gradient �ows

Allowing higher learning rates

Reducing strong dependence on initialization

Related to regularization (maybe slightly reduces the need for Dropout)

V[x] = V[x]j j

―――

[1]: "Ef�cient backprop", LeCun et al. 1998
[2]: "Batch normalization: Accelerating deep network training by reducing internal covariate shift", Ioffe and Szegedy 2015

31 / 41

The scaling of inputs is imposed by standardizing the input data feature-wise,

where

x = (x −) ⊙

′ μ
σ

1

 = x = .μ
n

1

i=1

∑
n

i σ (x −)
n

1

i=1

∑
n

i μ 2

―――
Credits: Scikit-Learn, Compare the effect of different scalers on data with outliers. 32 / 41

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#standardscaler

Batch normalization
Maintaining proper statistics of the activations and derivatives is critical for
training neural networks

This constraint can be enforced explicitly during the forward pass by re-
normalizing them

Batch normalization was the �rst method introducing this idea

―――

"Batch normalization: Accelerating deep network training by reducing internal covariate shift", Ioffe and Szegedy 2015
33 / 41

Batch normalization
During training, batch normalization shifts and rescales according to the mean
and variance estimated on the mini-batch

During evaluation, it shifts and rescales according to the empirical moments
estimated during training.

Let be intermediate values computed at some location in the

computational graph using a minibatch of training samples indexed by

Let us consider batch normalization applied following the node

BNu u'

u ∈ Rb
q

b = 1, … ,B

u

34 / 41

Batch normalization
During training, mean and variances are computed on each mini-batch

from which the standardized output is computed as

where are trained parameters. Moreover, we maintain along the mini-

batches global estimations and of the mean and standard deviations

During inference, batch normalization shifts and rescales each component
according to the global estimations computed during training

B

 = u = (u −) ,μ̂B
B

1

b=1

∑
B

b σ̂B
2

B

1

b=1

∑
B

b μ̂B
2

u ∈ Rb
′ q

u b
′ = γ ⊙ (u −) ⊙ + βb μ̂B

 + ϵσ̂B

1

γ,β ∈ Rq

μ̂ σ̂2

u = γ ⊙ (u −) ⊙ + β.′ μ̂
σ̂

1

35 / 41

Batch normalization

The position of batch normalization relative to the non-linearity is not clear

―――
Credits: Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 36 / 41

https://arxiv.org/abs/1502.03167

Layer normalization
Given a single input sample , a similar approach can be applied to standardize

the activations across a layer instead of doing it over the samples of the mini-

batch [1]

Seems to be an important ingredient for transformer architectures [2]

x

u

―――

[1] "Layer Normalization", Ba, Kiros and Hinton 2016
[2] "Attention Is All You Need", Vaswani et al. 2017

37 / 41

Early stopping

37 / 41

Early stopping
Checkpoint the model weights regularly (save everything on disk, disk storage
is cheap...)

Stop training when validation error goes up for a certain amount of epochs
(patience parameter)

Return the best checkpointed weights seen before, according to validation
error and consider the corresponding number of epochs as a

hyperparameter

Then, retrain on the full training data () for epochs,

or wait until error matches the one observed at early stopping

E

training ∪ validation E

38 / 41

Early stopping
Early stopping is an old idea

"Three topics in ill-posed problems", Wahba 1987

"A formal comparison of methods proposed for the numerical solution of �rst
kind integral equations", Anderssen and Prenter 1981

"Over�tting in neural nets: Backpropagation, conjugate gradient, and early
stopping", Caruana et al. 2001

But also an active area of research

"Adaboost is consistent", Bartlett and Traskin 2007

"Boosting algorithms as gradient descent", Mason et al. 2000

"On early stopping in gradient descent learning", Yao et al. 2007

"Boosting with early stopping: Convergence and consistency", Zhang, Yu, et al.
2005

"Early stopping for kernel boosting algorithms: A general analysis with
localized complexities", Wei et al. 2017

39 / 41

Final practical recommendations

39 / 41

Training a large deep neural network is long, complex and sometimes confusing or
counter-intuitive. This can take days, weeks or months !

A �rst step towards understanding, debugging, optimizing neural networks is to use
visualization tools such as TensorBoard in order to:

plot losses and metrics

visualizing computational graphs

show additional data as the network is being trained (activation norms, etc.)

40 / 41

The main steps usually look like this:

1. Preprocess the data and standardize it (if not, you need good reasons)

2. Build the architecture: input, outputs, layers, identify hyperparameters (ideally,
they are in a con�guration �le, .yaml or other)

3. Consider dummy or simple baselines and train them to have baseline metrics

4. Starting training for few epochs your network and see if the loss is reasonable
and compare it to baselines

5. Try to over�t a subset (or the whole data if time permits). You should be able to
over�t a small part of the data

6. Add regularization and check if the error on the training set increases (even a
little bit)

7. Hyper-optimize to �nd the best learning rate, mini-batch size and other hyper-
parameters and... wait !

8. Retrain using the whole data

9. Check test error

41 / 41

Thank you !

41 / 41

