Deep Learning

Lecture 3: Some hyperparameters, regularization techniques and practical
recommendations

Prof. Stéphane Gaiffas
https://stephanegaiffas.github.io

J ;. université

LABORATOIRE DE PROBABILITES o -4
STATISTIQUE & MODELISATION ; D I D E Ro I

Université de Paris

https://stephanegaiffas.github.io/

Agenda for today

1. Activation functions

2. Output units and losses

3. Weight initialization

4. Regularization by penalization

5. Regularization by Dropout

6. Batch normalization, layer normalization
7. Early stopping

8. Final practical recommendations

1/41

Activation functions

Sigmoid function
1
0($)—1+j
Comments

e Sigmoid is not centered at zero

0.5

e "Saturated" function: = gradient
killer

e Exp more computationally expensive
(although negligible in general)

0.0

sigmoid activation

2/41

Tanh

Hyperbolic tangent function

— | tanh(x):%:2a(2x)—l
e’ +e®

It's arescaling in [—1, 1] of the sigmoid
Comments

e Centered at zero

e "Saturated" function: = gradient
killer

e Exp more computationally expensive
(although negligible in general)

tanh activation

3/41

Rectified Linear Unit (ReLU)

RelLVU (positive part)
ReLU(x) = max(z,0)

i Comments

°r e Introducedin[1]

of e Not asaturated function (piecewise
SR 5SSO0 UUNNNS HUNNUUNS VOO RONE NUNSUUOS SOOI ROROE RUNNUOTS DU SO OO linear) and sparse output
| e Typicallyleads toarchitectures that
Ll , can be trained faster than sigmoid or
7Y SN S T S T S SN SN SO S tanh (since it mitigates vanishing

gradient)

Rel U activation

e Related to biology [2], Biologically
plausible

[1]: "Imagenet classification with deep convolutional neural networks", Krizhevsky et al. 2012

[2]: "Deep sparse rectifier neural networks", Glorot, Bordes, et al. 2011
4/41

Variations around RelLU

Activations of the form

z — max(ax,x)

Leaky ReLU

e It'saa = 0.1

¢ Introducedin[1]

S IO NS NS U PR ENE SR SRS SN SN R Absolute Value Rectification

P St ST P

—al .] L It'sa — _].

B -l I IR e Introducedin[2]
Leaky RelLU activation witha = 0.1 Parametric ReLU

e «isoptimized (learned activation)

e Introducedin [3]

[1]: "Rectifier nonlinearities improve neural network acoustic models", Maas et al. 2013
[2]: "What is the best multi-stage architecture for object recognition?", Jarrett et al. 2009

[3]: "Empirical evaluation of rectified activations in convolutional network", Xu et al. 2015
5/41

Exponential Linear Unit

T ifex >0

a(e® —1) otherwise

r t—

¢ Negative saturation regime, closer to
zero-mean output

o (typicallysetto 1.0

e Robustness to noise [1]

ELU activationwitha = 1

[1]: Fast and accurate deep network learning by exponential linear units (elus)”, Clevert et al. 2015

Maxout

Maxout unit

Replaces a dense layer

-
»

-
w
s

h = ReLU(Wz + b)

e
=N
L

-
o
L

where W € R?%¢ py
h = max(Wz + B)

where W € RF*axd ynq B ¢ RF*4

and max if over the extra dimension
T 5 5 1 o 1 3 5+t (maxofkcoordinates)

o = N W & U1 O N ©© O
s s L ' ' s L L L

Maxout activation withk = 3 e Number of parameters X k

e Learns piecewise linear functions up
to k pieces[1],[2]

o ¢ Generalizes ReLU and leaky ReLU

[1] "Maxout networks", Goodfellow, Warde-Farley, et al. 2013 W|th k — 2

[2] "Deep maxout neural networks for speech recognition”, Cai et al. 2013
7/41

Swish activation

T
rr—r —————

° 1+ e oz

N

31 e Introducedin[1]

1] ¢ Interpolates between the ReLU and
01 the identity
N
2. / e Non-monotonic which seems to be
5 an important feature

Swish activation forae = 0.1, 1, 10

[1] "Searching for activation functions", Ramachandran et al. 2017 o

Conclusion on activation functions

e Use RelLU (or Swish?)
e You cantry Leaky ReLU, maxout, ELU

e You cantry tanh, but do not expect too much

e Do not use sigmoid (unless you have reasons to)

e
oy e
v “ M“ I “ E S -
% -5 AA &
3 e
y -

; = Al
| Syt o ey — “‘Q
» o 1
- »* e A .
N L] »
HEE
v "

Output units and losses

Output units and losses

Linear output unit
For multivariate regression with alabel y € RE
j=W'h+b withloss £(y,7) = lly — 73

where W € R>K b c RE andh € R.
It's a standard multivariate least-squares regression using h as input features
Sigmoid output unit
For binary classification with a labely € {—1,1}

j=oc(w'h+b) withloss £(y,7)=log(l+ e)
wherew € R% b € Randh € RY.

It's a standard logistic regression using h as input features

10/41

Output units and losses

Softmax output unit
For K-class classification with alabely € {1,..., K}
7 = softmax(W 'h +b) where £(y,7) = crossentropy(y,7)
where W € R™>X andb € R and where
o7 oK
Yiaet Tiger]

softmax(z) = {

and

K
crossentropy(y, ¥ Z 1(k = y) log(7k)
k=1

It's a standard softmax regression also known as multi-class logistic regression
using h as input features

11/41

Output units and losses

The cross-entropy is very popular

Least-squares loss should not be used with softmax outputs [1]

There's a bunch of other losses (mean absolute error, hinge loss, Huber loss, ad-
hoc losses in computer vision, loss combinations, etc.)

More complex models than softmax or least-square error: conditional Gaussian
mixtures (multimodal y)

logistic
hinge
Huber |
quadratic hinge

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
!

vy

Some losses for binary classification

[1]: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition”, Bridle 1990
12/41

Weight initialization

Weight initialization

¢ Inconvex problems, provided a good learning rate, convergence is guaranteed
regardless of the initial parameter values.

¢ Inthe non-convex regime, initialization is much more important!

e Littleis known onthe mathematics of initialization strategies of neural
networks

e What is known: initialization should break symmetry and the scale of weights is
important

e Have alook at: https://www.deeplearning.ai/ai-notes/initialization/
Bad ideas

e set all weights and biases to the same value (for instance 0): all neurons are
going to be the same, in each iteration, too much symmetry

e small random numbers: might work for small networks but not for deeper
networks, we end-up with no activation at all

e big random numbers: saturating phenomenon and overflow

13/41

https://www.deeplearning.ai/ai-notes/initialization/

Variances in the forward pass

o Afirst strategy is toinitialize the network parameters such that activations
preserve the same variance across layers

¢ Intuitively, this ensures that the information keeps flowing during the forward
pass, without reducing or magnifying the magnitude of input signals
exponentially

Let us assume that

e we arein alinear regime at initialization (e.g., the positive part of a ReLU or the
middle of a sigmoid),

e weights wfj are initialized i.i.d,

e biases b; are initialized to be 0,

e input features are i.i.d, with a variance denoted as V|[z].

14/41

Variances in the forward pass

Then, the variance of the activation hé of unitZ in layer [is

qi-1 qi-1
-1 -1
V[E :wmhj] E:V VIR]
where q; is the width of layer [and hg = zjforallj = 1,...,p.Since the weights

’wéj at layer [share the same variance V[’wl] and the variance of the activations in
the previous layer are the same, we can drop the indices and write

V[h'] = g1 V[w' VIR,
Therefore, the variance of the activations is preserved across layers when
Viw']=1/g1 VL

This condition is enforced in LeCun's uniform initialization, which is defined as

wll-j ~ Uniform([—V/3/q1, \/3/ql_1]).

15/41

Variances in the backward pass

A similar idea can be applied to ensure that the gradients flow in the backward pass

(without vanishing nor exploding), by maintaining the variance of the gradient with
respect to the activations fixed across layers.

Under the same assumptions as before,

d4 [q1+1 d4 8hl-+1
v |:—yl] =V Z ly1 y
dn! — dnl*1 Oh)

. V qli d J l—l—].
o dhl+1

Lj=1

qr+1

_ZV

\Y [wluﬂ]

Jt

hl+1

16/41

Variances in the backward pass

If we further assume that

e the gradients of the activations at layer [share the same variance

e the weights at layer [+ 1 share the same variance V [w”l} ,

then we can drop the indices and write

o[2] -]

dnl dhl+1

Therefore, the variance of the gradients with respect to the activations is preserved
across layers when

17/41

Xavier initialization

We have derived two different conditions on the variance of w':

1 1
\Y [wl] = — and V [wl] = —
qi-1 q
A compromise is the Xavier initialization, which initializes w' randomly from a
distribution with variance

1 2
A _
V[w] ot g g
g B

For example, normalized initialization is defined as

wﬁj ~ Uniform | |— 6 ; 6
Qq-1+q \ q-1+q

) |

18/41

Examples of initializations

Xavier initialization [1]

6 6
Q-1+ qz’ q-1t+q

w ; ~ Uniform | |—

Gaussian initialization [2]
Initialize bias to zero and weights randomly using
2
wﬁj ~ Normal(i)
qi-1

LeCun's uniform initialization

3 3
wﬁj ~ Uniform | |— ,
q1-1 q1-1

[1]: "Understanding the difficulty of training deep feedforward neural networks" Glorot and Bengio 2010
[2]: "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification", He et al. 2015
[3]: "All you need is a good init", Mishkin and Matas 2015

19/41

Impact of a careful initialization

15 . . ! ! . I
i : : : —Layer 1
: ~—Layer 2
10~ —Layer 3| |
(‘\ — Layer 4
5- | : Layer 5| |

5 .
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value

2 T T T T T T T
- |—Layer1
15 |~ Layer 2| 4
—Layer 3
1+ —Layer 4|
Layer 3
0.5 A
i : e
™ | I i L . VO

0 = :
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: O-peak increases for
higher layers.

Credits: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010.

20/41

http://proceedings.mlr.press/v9/glorot10a.html

Impact of a careful initialization

100 | ; ! . I
k —Laver 1
—Layer 2
—Layer 3
50 —Layer 4|
Layer 5
0 l j S P i
-0.2 -0.15 -0.1 -0.0 0 0.05 0.1 0.15 0.2
Backpropagated gradients
].0 T T | T T T
Ik —Layer 1
: fﬂw:ﬂl 'h;l.ll| '.II Layer 2
ln]‘ ml‘ | . —Layer 3
5¢ JN{’H ’h h —Layer 4| |
,l‘}'in ; ,th\t\“ Layer 5
i —M‘f’llﬂ‘; | i | |}Ilmﬂwh‘,'m~— 4 I

025 -02 -015 01 005 0 005 01 015 02 025
Backpropagated gradients

Figure 7: Back-propagated gradients normalized his-

tograms with hyperbolic tangent activation, with standard

(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

Credits: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010.

21/41

http://proceedings.mlr.press/v9/glorot10a.html

Regularization by penalization

Regularization to avoid overfitting

Error

Underfit
(High bias)

Generalization
error

Overfit
(High
variance)

Training error

Model complexity

e We usually need to impose some constraints over the parameters space to
avoid overfitting

22/41

Avoid overfitting

Many different manners to avoid overfitting

Penalization: Ridge, L1, etc. where we replace F'(6) by F'(0) 4 pen(8) for
some penalization function pen

Weights sharing: such as with convolutional neural networks, where we reduce
the parameters space by imposing to explicit constraints

Dropout: kill at random some neurons during optimization, and predict with
the full network

Batch normalization: renormalize a layer inside a mini-batch, so that the
network does not overfil on this particular batch

Early stopping: stop the optimization procedure whenever the validation error
does not decrease for a certain number of epochs

23/41

Penalization

A penalization can be applied on each layer individually or all the layers

Most standard one is Ridge, see [1] and [2] also called weight decay in deep learning
literature where

A
pen(W) = 7| W3

with a penalization hyper-parameter A > 0. We can also use £; penalization [3]
pen(W) = A||W||;

or elastic-net [4]
A
pen(W) = A((1~)3 [W2 + ol W],

with the extra hyper-parameter o« & [0, 1]

[1]: "Ridge regression: Biased estimation for nonorthogonal problems", Hoerl and Kennard 1970

[2]: "Lecture notes on ridge regression", Wieringen 2015

[3]: "Regression shrinkage and selection via the lasso", Tibshirani 1996

[4]: "Regularization and variable selection via the elastic net", Zou and Hastie 2005 i

Regularization by Dropout

| | et SCHO(
) GRADUATION

I‘-n.;
Califgit = e
Ehi"ﬁ;-‘i :xf_ ,; ‘ff_‘a.r;
0o ‘\.. i'i'\lf}“.r AN
M) T PN ny hes N
] ’\‘y ey ey 1= W
! A I, ™~ N
i Jh TR -
1 DROP, IOUT,\ S=%/RATE
L] L)
\ ! h y et wr :
e 1l ——————
\ [s - ! T =
a4 'R J'.TT'. IR
1] [| Y " \‘ 1 l] \

Dropout [1] refers to dropping out units in a neural network: temporarily removing
it from the network, along with its incoming and outgoing connections.

Typically, each unit is independently retained with a probability

e p = 0.5 for hidden units

e p = 0.8 for input units

[1]: "Improving neural networks by preventing co-adaptation of feature detectors", Hinton et al. 2012

Dropout

During training: randomly remove units from the network. Update parameters as
normal, leaving dropped-out units unchanged.

e For each sample in a mini-batch, we sample a thinned network by dropping out
units

e Forward and back-propagation for that sample are done only on this thinned
network. Any sample which does not use a parameter contributes a gradient of
zero for that parameter

(a) Standard Neural Net (b) After applying dropout.

Dropout

During testing (evaluation only): we need to account for this by rescaling.

e If aunitisretained with probability p during training, the outgoing weights of
that unit are multiplied by p at test time

e This ensures that for any hidden unit the expected output (w.r.t the dropping
distribution used at training time) is the same as the actual output at evaluation

time

Present with Always

probability p present
(a) At training time (b) At test time

27/41

Dropout

Once again, with dropout we train as follows
Training: Inside one epoch, for a mini-batch of size m

e Sample m masks of iid Bernoulli random variables with probability p per node
of the network (inner and input nodes but not output nodes).

e Usually p = 0.5 for hidden nodes and p = 0.8 for input nodes
e For each one of the M samples in the mini-batch:

1. Do a forward pass on the masked network
2. Compute back-propagation on the masked network

3. Compute the mini-batch averaged gradient
e The optimizer updates the parameters as usual (nothing is changed here)

Prediction: Use all neurons in the network with the weights learned during training
multiplied by the p used during training.

28/41

Dropout as an ensemble method

e Reminiscent of columns sub-sampling in random forests

e Roughly, Dropout averages different neural networks

Different can mean:

e Randomizing the training data (by dropping input units)

¢ Building and combining different network architectures
see [1],[2]

e Another strategy is to drop weights and not whole units [3]

Also, we can understand dropout as some form of penalization (next)

[1]: "Fast dropout training", Wang and Manning 2013
[2]: "Dropout: A simple way to prevent neural networks from overfitting", Srivastava et al. 2014"

[3]: "Regularization of neural networks using dropconnect”, Wan et al. 2013
29/41

Dropout as penalization

e Consider linear regression with a matrix of features X € R™* 4 and labels
y € R™ and the least-squares objective w + ||y — Xw|3

e Here, Dropout drops inputs by replacing X by B ® X where B is a matrix
containing iid Bernoulli(p) random variables.

e The objective would become

F(w) - IEBf\JBernoulli(p) [Hy - (B © X)wH%]

where ® is the Hadamard (entry-wise) product. An easy computation shows
that this reduces to

F(w) = ||y — pXw|3 + p(1 — p)||Swlf3

where 3 = dian(XTX)l/2 which rewrites by setting w < pw

1—p
Fw0=Hy—Xw@+~7;WEw%

More details in "Dropout: A simple way to prevent neural networks from overfitting", Srivastava et al. 2014"

30/41

Batch normalization, layer
normalization

Batch normalization

e The network converges faster if its input are scaled (mean, variance) and
decorrelated [1]

e |t's hard to decorrelate variables: requires to compute the whole covariance
matrix [2]

e The previous weight initialization strategies rely on preserving the activation
variance constant across layers, under the initial assumption that the input
feature variances are the same, namely V |z ;| = V|z] for any feature j

Aims and ideas

e Improving gradient flows
e Allowing higher learning rates
¢ Reducing strong dependence on initialization

e Related to regularization (maybe slightly reduces the need for Dropout)

[1]: "Efficient backprop", LeCun et al. 1998
[2]: "Batch normalization: Accelerating deep network training by reducing internal covariate shift", loffe and Szegedy 2015

31/41

The scaling of inputs is imposed by standardizing the input data feature-wise,

1
[_ R =
z = (x 'U)QE

where

Data after standard scaling

.,

Full data Zoom-in

5
120 1
0.2 1
100 4
>
1 -
" . 01 5
S 80 =] 3
2 2 E
& 3 38
2 2 5
g 504 g 0.0 =
= = =
£ £ 28
z 2 5
-0.1 2
5]
201
1
-0.2
0 = -
-2 0 2 4 6 -2 -1 0 1 2 3
Median Income Median Income

Credits: Scikit-Learn, Compare the effect of different scalers on data with outliers. 32/41

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#standardscaler

Batch normalization

e Maintaining proper statistics of the activations and derivatives is critical for

training neural networks

e This constraint can be enforced explicitly during the forward pass by re-

normalizing them

e Batch normalization was the first method introducing this idea

Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate

Christian Szegedy
Google Inc., szegedy@google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

‘While stochastic gradient is simple and effective, it

"Batch normalization: Accelerating deep network training by reducing internal covariate shift", loffe and Szegedy 2015

33/41

Batch normalization

e Duringtraining, batch normalization shifts and rescales according to the mean
and variance estimated on the mini-batch

e Duringevaluation, it shifts and rescales according to the empirical moments
estimated during training.

e Letuy € RYbeintermediate values computed at some location in the
computational graph using a minibatch of training samples indexed by

b=1,...,B

e Let us consider batch normalization applied following the node u

BN

34/41

Batch normalization

During training, mean and variances are computed on each mini-batch B

B
. 1 . 1 .
MB:E;% U%ZEbZ;(Ub—MB)2,

from which the standardized output ug € R?is computed as

, 1

u, =70 (up — fig) © + B

OB + €

wherey, 8 € RY are trained parameters. Moreover, we maintain along the mini-
batches global estimations i and &2 of the mean and standard deviations

During inference, batch normalization shifts and rescales each component
according to the global estimations computed during training

. 1
’U/:’Y@(U—M)@g‘i‘ﬁ-

35/41

Batch normalization

08
B e -+
Model Steps to 72.2% Max accuracy
Inception 31.0-10° 72.2%
] BN-Baseline 13.3.10 72.7%
b/ e BN-x5 2.1-10° 73.0%
st ! Bws BN-x30 2.7-10° 74.8%
i + - BN-x5-Sigmoid BN—XE-SI‘gHTD.id 69.8%
: ‘ ‘ ‘ ‘0 Stepsln‘malch ‘
o 5M 10M 15M 20M 25M 30M Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
Figure 2: Single crop validation accuracy of Inception reach the maximum accuracy of Inception (72.2%),
and its batch-normalized variants, vs. the number of and the maximum accuracy achieved by the net-
training steps. work.

The position of batch normalization relative to the non-linearity is not clear

where W and b are learned parameters of the model, and
g(+) is the nonlinearity such as sigmoid or ReLU. This for-
mulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = 1" u+b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-
sian” (Hyvérinen & Qj2, [2000); normalizing it is likely to

produce activations with a stable distribution.

Credits: loffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 36/41

https://arxiv.org/abs/1502.03167

Layer normalization

e Given asingle input sample &, a similar approach can be applied to standardize
the activations u across a layer instead of doing it over the samples of the mini-

batch [1]

e Seems to be animportant ingredient for transformer architectures [2]

Output
Probabilities

Add & Norm

Add & Norm

Multi-Head
Attention

Add & Norm

Nx
Nx (Add & Norm Je~
Add & Norm (™ Vasked
Multi-Head Multi-Head
Attention Attention
A) A)
. —
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

[1] "Layer Normalization", Ba, Kiros and Hinton 2016
[2] "Attention Is All You Need", Vaswani et al. 2017

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(z + Sublayer(z)), where Sublayer(z) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dpoge; = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position ¢ can depend only on the known outputs at positions less than 3.

Early stopping

Early stopping

e Checkpoint the model weights regularly (save everything on disk, disk storage
is cheap...)

e Stop training when validation error goes up for a certain amount of epochs
(patience parameter)

e Return the best checkpointed weights seen before, according to validation
error and consider the corresponding number E of epochs as a

hyperparameter

e Then, retrain on the full training data (training U validation) for E epochs,
or wait until error matches the one observed at early stopping

-
Error

Validation

Training

early stopping Epochs

38/41

Early stopping

Early stopping is an old idea

"Three topics inill-posed problems", Wahba 1987

"A formal comparison of methods proposed for the numerical solution of first
kind integral equations", Anderssen and Prenter 1981

"Overfitting in neural nets: Backpropagation, conjugate gradient, and early
stopping", Caruana et al. 2001

But also an active area of research

"Adaboost is consistent"” Bartlett and Traskin 2007
"Boosting algorithms as gradient descent”, Mason et al. 2000
"On early stopping in gradient descent learning", Yao et al. 2007

"Boosting with early stopping: Convergence and consistency", Zhang, Yu, et al.
2005

"Early stopping for kernel boosting algorithms: A general analysis with
localized complexities", Wei et al. 2017

39/41

Final practical recommendations

Training a large deep neural network is long, complex and sometimes confusing or
counter-intuitive. This can take days, weeks or months !

A first step towards understanding, debugging, optimizing neural networks is to use
visualization tools such as TensorBoard in order to:

e plot losses and metrics
¢ visualizing computational graphs

e show additional data as the network is being trained (activation norms, etc.)

TensorBoard SCALARS IMAGES GRAPHS > INNCTVE ~ C & @
Show data download links Q, Filter tags (regular expressions supported)
Ignore outliers in chart scaling
accuracy
Tooltip sorting default ~
method: - cross entropy
Smoothing cross entropy
— o 0.6 0.0550
0.0450
0.0350
Horizontal Axis
0.0250
RELATIVE ~ WALL 0.0150
5.000e-3
s -5.000e-3

0.000 3000 6000 2000

Write a regex to filter runs

() train
Relative
O eval 0.02550 . 170.0 2 15:40 8s 1

TOGGLE ALL RUNS

ftmp/mnist-logs

40/41

The main steps usually look like this:

1. Preprocess the data and standardize it (if not, you need good reasons)

2. Build the architecture: input, outputs, layers, identify hyperparameters (ideally,
they are in a configuration file, . yaml or other)

3. Consider dummy or simple baselines and train them to have baseline metrics

4. Starting training for few epochs your network and see if the loss is reasonable
and compare it to baselines

5. Try to overfit a subset (or the whole data if time permits). You should be able to
overfit a small part of the data

6. Add regularization and check if the error on the training set increases (even a
little bit)

7. Hyper-optimize to find the best learning rate, mini-batch size and other hyper-
parameters and... wait !

8. Retrain using the whole data

9. Check test error

41/41

THE #| DATA SCIENTIST EXCUSE
FOR LEGITIMATELY SLACKING OFF:

"NEURAL NET 15 TRAINING,"

HEY! GET BACK
TO WORK!

il
. v
A

OH. CARRY ON.) A AN

Thank you'!

41/41

