
Deep Learning
Lecture 4: Around optimization and optimizers for neural nets

Prof. Stéphane Gaïffas
https://stephanegaiffas.github.io

1 / 29

https://stephanegaiffas.github.io/

Agenda for today
1. Batch versus stochastic gradient descent

2. Momentum methods

3. Adaptive learning rates

4. Learning rate scheduling

1 / 29

Batch versus stochastic gradient
descent

1 / 29

Batch gradient descent
To minimize a goodness-of-�t function of the form

standard batch gradient descent (GD) consists in applying the update rule

where is the learning rate.

R (θ)n

R (θ) = ℓ(y , f(x , θ)),n
n

1

i=1

∑
n

i i

gt

θt+1

= ∇ ℓ(y , f(x ; θ))
n

1

i=1

∑
n

θ i i t

= θ − γg ,t t

γ

2 / 29

3 / 29

Batch gradient descent
While it makes sense to compute the gradient exactly,

it takes time to compute and becomes inef�cient for large ,

it is an empirical estimation of an hidden quantity (the expected risk): any
partial sum is also an unbiased estimate, although of greater variance.

Consider an ideal case where the training dataset is the same set of

samples replicated times. Then,

Instead of summing over samples and moving by , we can use only samples

and move by : this devides the computation by .

Although this is an ideal case, there is redundancy in practice that results in similar
behaviors.

n

m ≪ n

k

R (θ) = ℓ(y , f(x , θ)) = ℓ(y , f(x ; θ)).n
n

1

i=1

∑
n

i i
n

k

l=1

∑
m

l l

n γ m

kγ k

4 / 29

Stochastic gradient descent
To reduce the computational complexity, stochastic gradient descent (SGD) consists
in updating the parameters after every sample

where is sampled uniformly in at each iteration. The stochastic

behavior of SGD helps to evade local minima.

While being computationally faster than batch gradient descent,

gradient estimates used by SGD can be very noisy,

SGD in this form does not bene�t from the speed-up of batch-processing

g t

θ t+1

= ∇ ℓ(y , f(x ; θ))θ i(t) i(t) t

= θ − γg t t

i(t) {1, … ,n}

5 / 29

6 / 29

Instead, mini-batch SGD uses samples in mini-batches to update the parameters at
each step

where each mini-batch is typically obtained by reading sequentially shuf�ed

data, meaning that a random permutation is applied on the data at the beginning of
each epoch

Remarks

Increasing the batch size reduces the variance of the gradient estimates and

gives a speed-up (more parallel computations)

The interplay between and is unclear

Gradient descent makes strong assumptions about the magnitude of the local
curvature to set the step size and the isotropy of the curvature, so that the
same step size makes sense in all directions.

θ = θ − γg where g = ∇ ℓ(y , f(x ; θ))t+1 t t t ∣B ∣t

1

i∈B t

∑ θ i i t

B t

B

B γ

γ

7 / 29

γ = 0.01

8 / 29

γ = 0.01

9 / 29

γ = 0.1

10 / 29

γ = 0.4

11 / 29

Tradeoffs of large-scale learning
Bottou and Bousquet (2011): stochastic optimization algorithms (e.g., SGD) yield
the best generalization performance (in terms of excess error) despite being the
worst optimization algorithms for minimizing the empirical risk.

For a �xed computational budget, stochastic optimization algorithms reach a lower
test error than more sophisticated algorithms (2nd order methods, line search
algorithms, etc) that would �t the training error too well

12 / 29

Momentum methods

12 / 29

Momentum

In the situation of small but consistent gradients, as through valley �oors, gradient
descent moves very slowly.

13 / 29

New variable is the velocity. It's the direction and

speed by which parameters move during training,
modeled as an exponentially decaying moving
average of negative gradients.

Gradient descent with momentum has three nice
properties:

it can go through local barriers

it accelerates if the gradient does not change
much

it dampens oscillations in narrow valleys

https://distill.pub/2017/momentum/

An improvement to gradient descent is to use momentum to add inertia in the
choice of the step direction, that is

θ = θ + u where u = αu − γg t+1 t t t t−1 t

u t

―――
"Some methods of speeding up the convergence of iteration methods", Polyak 1964 14 / 29

https://distill.pub/2017/momentum/

The hyper-parameter controls how recent gradients affect the current update.

Usually, , with .

If at each update we observed , the step would (eventually) be

Therefore, for , it is like multiplying the maximum speed by relative

to the current direction.

α

α = 0.9 α > γ

g

u = − g.
1 − α

γ

α = 0.9 10

15 / 29

16 / 29

Nesterov momentum
An alternative consists in simulating a step in the direction of the velocity, then
calculate the gradient and make a correction.

It's an improvement over Polyak's momentum

g t

u t

θ t+1

= ∇ ℓ(y , f(x ; θ + αu))
n

1

i=1

∑
n

θ i i t t−1

= αu − γg t−1 t

= θ + u t t

17 / 29

18 / 29

Adaptive learning rates

18 / 29

Adaptive learning rates
Vanilla gradient descent assumes the isotropy of the curvature, so that the same
step size applies to all parameters.

Isotropic vs. Anistropic

γ

19 / 29

AdaGrad
Introduced in [1]. Per-parameter downscale of the learning rates by the square-root
of the sum of squares of all the gradient historical values.

Mitigates the need to manually tune the learning rate. Most implementations
use as default

Dynamic learning rates on each coordinate, learning rates can have different
orders of magnitude across layers

Accumulation of gradients acts as a descreasing learning rate

 grows unboundedly during training, which may cause the step size to shrink

and eventually become in�nitesimally small

Sensitive to initial condition: large initial gradients lead to small learning rates

r = r + g ⊙ g where θ = θ − ⊙ g .t t−1 t t t+1 t
δ + r t

γ
t

γ = 0.01

rt

―――

[1]: Duchi, Hazan, and Singer, "Adaptive subgradient methods for online learning and stochastic optimization", Journal of machine learning research (2011)
20 / 29

RMSProp
Unpublished method, from the course of Geoff Hinton [1]

Same as AdaGrad but accumulate an exponentially decaying average of the past
gradients.

Perform better in non-convex settings.

Does not grow unboundedly.

r t

θ t+1

= ρr + (1 − ρ)g ⊙ g t−1 t t

= θ − ⊙ g .t
δ + r t

γ
t

―――

[1]: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
21 / 29

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

AdaDelta
Introduced as an improvement of AdaGrad in [1]: less sensitivity to initial
parameters.

Actually uses mobile means using �xed number of past iterations to compute

and

The numerator keeps the size of the previous step in memory and enforce
larger steps along directions in which large steps were made.

The denominator keeps the size of the previous gradients in memory and acts
as a decreasing learning rate.

rt

θt+1

st

= ρr + (1 − ρ)g ⊙ g t−1 t t

= θ − γ ⊙ g t
δ + r t

 δ + s t−1
t

= ρs + (1 − ρ)(θ − θ) ⊙ (θ − θ)t−1 t+1 t t+1 t

r t

s t

―――

[1]: Zeiler, "Adadelta: an adaptive learning rate method", arXiv preprint arXiv:1212.5701 (2012)
22 / 29

AdaDelta
The intuition is to compute a dynamic learning rate for each weight based on the
past gradient values (as with AdaGrad) but using also second order information "a
la" second order method.

Indeed, in second order methods we use

so that, roughly,

see also [1]. But, citing [2]:

Determining a good learning rate becomes more of an art than science for many
problems

θ − θ = (∇ f(θ)) ∇f(θ)t+1 t
2

t
−1

t

(∇ f(θ)) ≈

2
t

−1

∇f(θ)t

θ − θ t+1 t

―――

[1]: Schaul, Zhang and LeCun, "No more pesky learning rates", ICML (2013)
[2]: Zeiler, "Adadelta: an adaptive learning rate method", arXiv preprint arXiv:1212.5701 (2012)

23 / 29

Adam
Introduced in [1]. Similar to RMSProp with momentum, but uses �rst and second
moment of the gradient to update the parameters.

Good defaults are , , and

Converge results are available in [1] and [2]

Adam is one of the default optimizers in deep learning, along with SGD with
momentum

s t

 ŝ t

r t

 r̂ t

θ t+1

= ρ s + (1 − ρ)g 1 t−1 1 t

=

1 − ρ 1
t

s t

= ρ r + (1 − ρ)g ⊙ g 2 t−1 2 t t

=

1 − ρ 2
t

r t

= θ − ⊙ t
δ + r̂ t

γ
ŝ t

δ = 10−3 ρ = 0.91 ρ = 0.9992 δ = 10−8

―――

[1]: Kingma and Ba, "Adam: A method for stochastic optimization", arXiv preprint (2014)
[2]: Reddi et al. "Adaptive methods for nonconvex optimization", NeurIPS (2018) ISO 690

24 / 29

Adamax
A variation on Adam introduced in [1]. Replaces the use of second-order moments
by a exponentially decaying maximum of the absolute values of past gradients

Computationally cheaper, can lead to similar results as Adam

st

ŝ t

ut

r̂ t

θt+1

= ρ s + (1 − ρ)g 1 t−1 1 t

=

1 − ρ 1
t

s t

= max (ρ u , ∣g ∣)2 t−1 t

=

1 − ρ 2
t

r t

= θ − ⊙ t
δ + u t

γ
ŝ t

―――

[1]: Kingma and Ba, "Adam: A method for stochastic optimization", arXiv preprint (2014)
25 / 29

26 / 29

―――
Credits: Kingma and Ba, Adam: A Method for Stochastic Optimization, 2014. 27 / 29

https://arxiv.org/abs/1412.6980

Learning rate scheduling

27 / 29

Learning rate scheduling
Despite per-parameter adaptive learning rate methods, it is usually helpful to
anneal the learning rate over time.

Step decay: reduce the learning rate by some factor every few epochs (e.g, by
half every 10 epochs).

Exponential decay: where and are hyper-parameters.

 decay: where and are hyper-parameters.

You will also �nd other techniques such as:

Warm-up phases, where the learning rate is increased before being annealed

Oscillating learning rates

γ

γ = γ exp(−kt)t 0 γ 0 k

1/t γ = γ /(1 + kt)t 0 γ 0 k

28 / 29

Learning rate scheduling

Step decay scheduling for training ResNets.

29 / 29

Thank you !

29 / 29

