Deep Learning

Lecture 5: Convolutional Neural Networks

Prof. Stéphane Gaiffas
https://stephanegaiffas.github.io

J ‘Q université

LABORATOIRE DE PROBABILITES o =
STATISTIQUE & MODELISATION ; D I D E Ro I

Université de Paris

https://stephanegaiffas.github.io/

Agenda for today

How to make neural networks see?

1. A little history

2. Convolutions

3. Pooling

4. Convolutional networks

5. Under the hood

A little history

Visual perception

e Hubel and Wiesel, 1959-1962
e David Hubel and Torsten Wiesel discover the neural basis of visual perception.

e Awarded the Nobel Prize of Medicine in 1981 for their discovery.

electrical signal

recording electrode

visual area
of brain

stimulus

Hubel and Wiesel Cat Experiment

Hubel and Wiesel

https://www.youtube.com/watch?v=IOHayh06LJ4

Hubel & Wiesel 1: Intro

Hubel and Wiesel

https://www.youtube.com/watch?v=y_l4kQ5wjiw

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with ‘on’ centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated ‘on’ centre indicated by the interrupted lines in the
receptive-field diagram to the left of the figure.

Credits: Hubel and Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, 1962.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, of which three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

Credits: Hubel and Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, 1962.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/

The Mark-1 Perceptron

RETINA OF

S-UNITS A-UNITS
D 0

0 o€ -

0 °-gog B3 Lt T

R |— OUTPUT SIGNAL

.--" _._-:..

0, 0 O Bula ot — O o

:"—-aﬁ W +1 OR -
0% “=—g ga/>

e Rosenblatt, 1957-61
e Rosenblatt builds the first implementation of a neural network.

e The network is an anlogic circuit. Parameters are potentiometers.

Credits: Frank Rosenblatt, Principle of Neurodynamics, 1961.

7/62

http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf

The Mark-1 Perceptron

A1 s

12 gwits
TOROIDAL RETINA

e
F_:_\]
i;/v

@ = EXCITATORY ORIGIN
O = IKHIBITORY ORIGIN

I T T

VALUES - ¢ | VALUES = + | VARIABLE
VALUES

"If we show the perceptron a stimulus, say a square, and associate a response to
that square, this response will immediately generalize perfectly to all transforms of
the square under the transformation group [...]."

e Thisis quite similar to Hubel and Wiesel's simple and complex cells!

Credits: Frank Rosenblatt, Principle of Neurodynamics, 1961.

8/62

http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf

Al winter

e Minsky and Papert, 1969+

e Minsky and Papert prove a series of impossibility results for the perceptron (or
rather, a narrowly defined variant thereof).

e Al winter follows.

Theorem 0.8: No diameter-limited perceptron can determine
whether or not all the parts of any geometric figure are connected
to one another! That is, no such perceptron computes ¥ connecren-

Credits: Minsky and Papert, Perceptrons: an Introduction to Computational Geometry, 1969. 9/62

Automatic differentiation

Actual Variable Variable Category Ma Jor Minor
Number Source Source
(Address)
A(t+1) 13 sum 12 11
KyA(t) 12 product 3 1
su(e) (AL)ku 1 + 10 b
U () (K terice Froduc
U(t)(—f—g----(—)H e e Jk" 10 + 2
At produc 9
(ALL)=u(s)"u 8
A(E)(e ? pover 5
Alt)=U(¢
W 8 ratio ? [
A(t)-U(t) ? difference 1 2
Alt)HI(t) & sun 1 2
K, 5 parameter - -
Ky 4 parameter - -
ky 3 paraneter - -
u(t) 2 given - -
At) 1 given » -

e Werbos, 1974

e Werbos formulate an arbitrary function as a computational graph

e Symbolic derivatives are computed by dynamic programming.

Credits: Paul Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, 1974.

10/62

Neocognitron

k————— visual area *jeassociation area —
: i lower-order __ higher-order _, __grandmother
retina — LGB —=simple — complex —= hyper B Sl complex* [
n——lv-———"*l-—-: ‘r-—‘————*‘—-} P ——————n —b modifiable synapses
e HIE —Dl — JEEEE
Uo et USI UC! _J [:’Usz Ucz J| L Usz Ues7— —> unmodifiable synapses

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

e Fukushima, 1980

e Fukushima proposes a direct neural network implementation of the hierarchy
model of the visual nervous system of Hubel and Wiesel.

Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980. 11/62

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

Neocognitron

Convolutions Feature hierarchy

¢ Built upon convolutions and enables the composition of a feature hierarchy.

¢ Biologically-inspired training algorithm, which proves to be largely inefficient.

Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980. 12/62

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

Backpropagation

e Rumelhartetal, 1986

e Rumelhart and Hinton introduce
backpropagation in multi-layer
networks with sigmoid non-
linearities and sum of squares loss
function.

e They advocate for batch gradient
descent in supervised learning.

e Discuss online gradient descent,
momentum and random
initialization.

e Depart from biologically plausible
training algorithms.

Credits: Rumelhart et al, Learning representations by back-propagating errors, 1986.

The backward pass starts by computing 6E/dy for each of
the output units. Differentiating equation (3) for a particular
case, ¢, and suppressing the index ¢ gives

0E/dy;=y;—d; (4)
We can then apply the chain rule to compute 4E/dx;
dE/ax; =0E [ay; dy;/dx;
Differentiating equation (2) to get the value of dy;/dx; and
substituting gives
dE[dx;=0E/ay;-y,(1—y;) (5)

This means that we know how a change in the total input x to
an output unit will affect the error. But this total input is just a
linear function of the states of the lower level units and it is
also a linear function of the weights on the connections, so it
is easy to compute how the error will be affected by changing
these states and weights. For a weight w;, from i to j the
derivative is

oE/ow; =aE [ax;-0x;/dwy
=3E/ax;" y; (6)

13/62

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

Convolutional networks

e [LeCun, 1990

e LeCun trains a convolutional network by backpropagation.

e He advocates for end-to-end feature learning in image classification.

el LTSS AL oo

Vi PR i 7 =l 7y s
‘-;7 5 g ﬂ R (o W Py ey
;:) g @ g AL P AT

<

ZEET INPLT

Credits: LeCun et al, Handwritten Digit Recognition with a Back-Propagation Network, 1990.

14/62

http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf

Convolutional Network Demo from 1993

LeNet-1 (LeCunetal, 1993)

https://www.youtube.com/watch?v=FwFduRA_L6Q

AlexNet

e Krizhevsky et al, 2012

e Krizhevsky trains a convolutional network on ImageNet with two GPUs.

e 16.4% top-5error on ILSVRC'12, outperforming all other entries by 10% or
more.

e This event triggers the deep learning revolution.

gk 178 2048 \/ 2048 \dense
, 128]]
N AN 13 \ 13
3" — 3 [3[1 A
13 JN -+ >
s N 3|\ iR 13 dense dense
3| N 1660
192 192 128 Max L L
Max 128 Max pooling 2048 2048
pooling pooling

16/62

Convolutions

Convolutions

If they were handled as normal "unstructured" vectors, high-dimensional signals
such as sound samples or images would require models of intractable size.

E.g., alinear layer taking 256 X 256 RGB images as input and producing an image
of same size would require

(256 x 256 x 3)* ~ 3.87 x 10" ~ 144GB
of memory using f1oat 32, which excess memory capacity.

This requirement is also inconsistent with the intuition that such large signals have
some "invariance in translation". A representation meaningful at a certain location
can/ should be used everywhere.

A convolution layer embodies this idea. It applies the same linear transformation
locally everywhere while preserving the signal structure.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 17/ 62

https://fleuret.org/ee559/

Given an input vector z € R"Y and a convolutional kernel u € RY, the discrete
convolution x ® u is avector of size W — w -+ 1 such that

w
(x ®u); = Z Lyt Uy -
m=1

Input

1 4 -1 0 2 -2 1 3 3 1

w

Output

W-w+1

Technically, ® denotes the cross-correlation operator. However, most machine
learning libraries call it convolution.

18/62

Convolutions

Convolutions can implement differential operators:

(0,0,0,0,1,2,3,4,4,4,4) ® (—1,1) = (0,0,0,1,1,1,1,0,0,0)

J_Wr@m:_ﬂ_ﬂ—l_

or crude template matchers:

Convolutions generalize to multi-dimensional tensors:

e |nits most usual form, a convolution takes as input a 3D tensor x & REXHXW.
called the input feature map.

e Akernelu € RE*" ¥ glides across the input feature map, along its height and

width. The size h X w is the size of the receptive field.

e At eachlocation, the element-wise product between the kernel and the input
elements it overlaps is computed and the results are summed up. 19/62

Input

w
T Kernel
w
H h
—
C
L e

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

Qutput

20/62

https://fleuret.org/ee559/

The final output ois a 2D tensor of size (H — h + 1) X (W — w + 1) called the
output feature map and such that:

C—-1h—1 w-1
—b z"l_E (xc®uc .77 _b z"" Lentjm+ilen,m

c=0 n=0 m=0

where u and b are shared parameters to learn.

e D convolutions can be applied in the same way to produce a
D x (H—h+1) x (W —w + 1) feature map, where D is the depth.

e Swiping across channels with a 3D convolution usually makes no sense, unless
the channel index has some metric mearning.

Convolutions have three additional parameters:

e The padding specifies the size of a zeroed frame added arount the input.
e The stride specifies a step size when moving the kernel across the signal.

e Thedilation modulates the expansion of the filter without adding weights.

21/62

Convolutions: padding

Padding is useful to control the spatial dimension of the feature map, for example to
keep it constant across layers.

Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 22/62

https://arxiv.org/abs/1603.07285

Convolutions: strides

Stride is useful to reduce the spatial dimension of the feature map by a constant
factor.

Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 23/62

https://arxiv.org/abs/1603.07285

Convolutions: dilation

The dilation modulates the expansion of the kernel support by adding rows and
columns of zeros between coefficients.

Having a dilation coefficient greater than one increases the units receptive field size
without increasing the number of parameters.

Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 24/62

https://arxiv.org/abs/1603.07285

Equivariance

A function f is equivariant to g if f(g(x)) = g(f(x)).

e Parameter sharing used in a convolutional layer causes the layer to be
equivariant to translation.

Bt &

g0
r=41i

LN
-
| F L
|
u E
| 1]
|]
Bl
-
Y
=
| e |
i
..,;
4

(i

If an object moves in the input image, its representation will move the same amount in the output.

e Equivariance is useful when we know some local function is useful everywhere
(e.g., edge detectors).

e Convolution is not equivariant to other operations such as change in scale or
rotation. 25/62

Convolution is as matrix
multiplication

As a guiding example, let us consider the convolution of single-channel tensors
x € R¥4 andu € R3*3:

X®u=)

126 134

W -

4 1
4 3 :[122 148]
3 1

D W A
Ul O 0o ot
-1 S 0 0o
00 & 00 =3

26/62

The convolution operation can be equivalently re-expressed as a single matrix
multiplication:

¢ the convolutional kernel u is rearranged as a sparse Toeplitz circulant matrix,
called the convolution matrix:

1 41014 3 03 31000 O0O0

U — o1 4101430331000 0
{00 0001 41 0143©03 310
0 0600001 410143203 3 1

e theinput xis flattened row by row, from top to bottom:
vx)=[4 5 8 7 1 8 8 8 3 66 4 6 5 7 8
Then,
Un(x) = [122 148 126 134]
which we can reshapeto a2 X 2 matrix to obtainx ® u.

27/62

RHXW

The same procedure generalizesto X € and convolutional kernel

u € R"% suchthat:

e the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix U

of shape (H — h 4+ 1)(W — w + 1) x HW where

o eachrow 1 identifies an element of the output feature map,
o each column j identifies an element of the input feature map,

o thevalue Ui’j corresponds to the kernel value the element 7 is multiplied with in output ;
e theinput x is flattened into a column vector v(x) of shape HW X 1;

e the output feature map X ® u is obtained by reshaping the
(H—h+1)(W —w+ 1) x 1columnvector Uv(x) asa
(H—h+1) x (W —w+ 1) matrix.

Therefore, a convolutional layer is a special case of a fully connected layer:

h=x®u < v(h) = Uv(x) < v(h) = W u(x)

28/62

is equivalent to

flatten

—>

matmul

reshape

Pooling

Pooling

When the input volume is large, pooling layers can be used to reduce the input
dimension while preserving its global structure, in a way similar to a down-scaling

operation.

Consider a pooling area of size h X w and a 3D input tensor X € RE*(rh)x(sw)

e Max-pooling produces a tensor 0 € RE*"*$ sych that

OC,j,i - max XC,T‘j+n,si+m .
n<h,m<w

e Average pooling produces a tensor o € RE*T%5 such that

-1

>

-1

g

1
Oc.ji = Xe,rj+n,si+m-
2 hw) ’
0

S
&
i

Pooling is very similar in its formulation to convolution.

30/62

Pooling

Input

Output

sh

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 31/62

https://fleuret.org/ee559/

Invariance

A function fisinvariantto g if f(g(x)) = f(x).

e Pooling layers provide invariance to any permutation inside one cell.
e |tresultsin (pseudo-)invariance to local translations.

¢ This helpful if we care more about the presence of a pattern rather than its
exact position.

Input

Output T

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

32/62

https://fleuret.org/ee559/

Convolutional networks

A convolutional network is generically defined as a composition of convolutional

layers (CONV), pooling layers (POOL), linear rectifiers (RELU) and fully connected
layers (FC).

convolution linear
rectification pooling

max convolution

convolution layer pooling layer

33/62

The most common convolutional network architecture follows the pattern:

INPUT — [[CONV — RELU]*N — POOL?|*M — [FC — RELU]*K — FC

where:

e *indicates repetition;
e POOL? indicates an optional pooling layer;
e N >0(andusually N < 3),M > 0,K > 0(andusually K < 3);

e the last fully connected layer holds the output (e.g., the class scores).

34/62

Some common architectures for convolutional networks following this pattern
include:

e INPUT — FC, which implements a linear classifier (N = M = K = ().

INPUT — [FC — RELU]*K — FC, whichimplements a K -layer MLP.
INPUT — CONV — RELU — FC.

INPUT — [CONV — RELU — POOL]*2 — FC — RELU — FC.

INPUT — [[CONV — RELU|*2 — POOL]*3 — [FC — RELU|*2 — FC.

35/62

36/62

LeNet-5

e LeCunetal, 1998

e Composition of two CONV + POOL layers, followed by a block of fully-

connected layers.

convolution

convolution
pooling
L| 6@14x14
— S2 feature map
28x28 image 6@28x28

C1 feature map

Credits: Dive Into Deep Learning, 2020.

pooling dense

—

120 - F5 full

16@10x10
C3 feature map

16@5x5
S4 feature map

dense
dense

84 - F6 full

37/

62

https://d2l.ai/

Layer (type) Output Shape Param #
Conv2d-1 [-1, 6, 28, 28] 156
RelLU-2 [-1, 6, 28, 28] 0
MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416
ReLU-5 (-1, 16, 10, 10] 0
MaxPool2d-6 [-1, 16, 5, 5] 0
Conv2d-7 [-1, 120, 1, 1] 48,120
ReLU-8 [-1, 120, 1, 1] 0
Linear-9 [-1, 84] 10,164
ReLU-10 [-1, 84] 0
Linear-11 [-1, 10] 850
LogSoftmax-12 [-1, 10] 0

Total params: 61,706

Trainable params: 61,706
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 0.11
Params size (MB): 0.24

Estimated Total Size (MB): 0.35

38/62

AlexNet (Krizhevsky et al, 2012)

Composition of a 8-layer convolutional neural
network with a 3-layer MLP.

The original implementation was made of two
parts such that it could fit within two GPUs.

Credits: Dive Into Deep Learning, 2020.

Dense (1000)

| DenseT(4096) |
| DenseT(4096) |
| 3x3 MaxPcToI, stride 2 |
t
Dense (10)		3x3 Conv (384), pad 1
Densi (84)		3x3 Conv :384), pad 1
Densi (120)		3x3 Conv (T384), pad 1
2x2 AngoToI, stride 2		3x3 MaxPcToI, stride 2
ES C:nv w)		sxscon (T256), pad2
2x2 AngoToI, stride 2		3x3 MaxPoToI, stride 2
t t

| 5x5 Conv (6), pad 2 |

| 11x11 Conv (96), stride 4 |

t

image (28x28)

image (3x224x224)

LeNet vs. AlexNet

https://d2l.ai/

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 55, 55] 23,296
ReLU-2 (-1, 64, 55, 55] 0
MaxPool2d-3 (-1, 64, 27, 27] 0
Conv2d-4 [-1, 192, 27, 27] 307,392
RelLU-5 [-1, 192, 27, 27] 0
MaxPool2d-6 [-1, 192, 13, 13] 0
Conv2d-7 [-1, 384, 13, 13] 663,936
ReLU-8 [-1, 384, 13, 13] 0
Conv2d-9 [-1, 256, 13, 13] 884,992
ReLU-10 [-1, 256, 13, 13] 0
Conv2d-11 [-1, 256, 13, 13] 590,080
ReLU-12 [-1, 256, 13, 13] 0
MaxPool2d-13 [-1, 256, 6, 6] 0
Dropout-14 [-1, 9216] 0
Linear-15 [-1, 40906] 37,752,832
RelLU-16 [-1, 4096] 0
Dropout-17 [-1, 40906] 0
Linear-18 [-1, 4096] 16,781,312
ReLU-19 [-1, 4096] 0
Linear-20 [-1, 1000] 4,097,000
Total params: 61,100,840
Trainable params: 61,100,840
Non-trainable params: 0
Input size (MB): 0.57
Forward/backward pass size (MB): 8.31
Params size (MB): 233.08
Estimated Total Size (MB): 241.96

40/ 62

VGG (Simonyan and
Zisserman, 2014)

Composition of 5 VGG blocks
consisting of CONV + POOL
layers, followed by a block of
fully connected layers.

The network depth increased
up to 19 layers, while the
kernel sizes reduced to 3.

Credits: Dive Into Deep Learning, 2020.

AlexNet

Dense (1000) |

t

Dense (4096) |

t

Dense (4096) |

t

3x3 MaxPool, stride 2 |

t

3x3 Conv (384), pad 1 |

t

3x3 Conv (384), pad 1 |

t

3x3 Conv (384), pad 1 |

t

3x3 MaxPool, stride 2 |

t

5x5 Conv (256), pad 2 |

t

3x3 MaxPool, stride 2 |

t

11x11 Conv (96), stride 4 |

VGG

Dense (1000)
Dense (4096)

Dense (4096)

]
)
VGG block 3]
i |
| 3x3 MaxPool, stride 2 | 7
t
| 3x3 Conv, pad 1 | 1
t]
4 |
t k3
| 3x3 Conv, pad 1 | 4 I

AlexNet vs. VGG

https://d2l.ai/

A

N
L LN\

NN NN AN

NEANANAN

The effective receptive field is the part of the visual input that affects a given unit
indirectly through previous convolutional layers. It grows linearly with depth.

E.g., astack of two 3 X 3 kernels of stride 1 has the same effective receptive field as
asingle 5 x 5 kernel, but fewer parameters.

42/62

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 224, 224] 1,792
ReLU-2 [-1, 64, 224, 224] 0
Conv2d-3 [-1, 64, 224, 224] 36,928
ReLU-4 [-1, 64, 224, 224] 0
MaxPool2d-5 [-1, 64, 112, 112] 0
Conv2d-6 [-1, 128, 112, 112] 73,856
ReLU-7 [-1, 128, 112, 112] 0
Conv2d-8 [-1, 128, 112, 112] 147,584
ReLU-9 [-1, 128, 112, 112] 0
MaxPool2d-10 [-1, 128, 56, 56] 0
Conv2d-11 [-1, 256, 56, 56] 295,168
ReLU-12 [-1, 256, 56, 56] 0
Conv2d-13 [-1, 256, 56, 56] 590,080
ReLU-14 [-1, 256, 56, 56] 0
Conv2d-15 [-1, 256, 56, 56] 590,080
ReLU-16 [-1, 256, 56, 56] 0
MaxPool2d-17 [-1, 256, 28, 28] 0
Conv2d-18 [-1, 512, 28, 28] 1,180,160
ReLU-19 [-1, 512, 28, 28] 0
Conv2d-20 [-1, 512, 28, 28] 2,359,808
ReLU-21 [-1, 512, 28, 28] 0
Conv2d-22 [-1, 512, 28, 28] 2,359,808
ReLU-23 [-1, 512, 28, 28] 0
MaxPool2d-24 [-1, 512, 14, 14) 0
Conv2d-25 [-1, 512, 14, 14] 2,359,808
ReLU-26 [-1, 512, 14, 14] 0
Conv2d-27 [-1, 512, 14, 14) 2,359,808
ReLU-28 [-1, 512, 14, 14] 0
Conv2d-29 [-1, 512, 14, 14] 2,359,808
ReLU-30 [-1, 512, 14, 14] 0
MaxPool2d-31 (-1, 512, 7, 7] 0
Linear-32 [-1, 4096] 102,764,544
ReLU-33 [-1, 4096] 0
Dropout-34 [-1, 4096] 0
Linear-35 [-1, 4096] 16,781,312
ReLU-36 [-1, 4096] 0
Dropout=-37 [-1, 4096] 0
Linear-38 [-1, 1000] 4,097,000

Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0

Tnput size (MB): 0.57

Forward/backward pass size (MB): 218.59
Params size (MB): 527.79

Estimated Total Size (MB): 746.96

43/62

GooglLeNet (Szegedy et al, 2014)

Composition of two CONV + POOL layers, a stack of 9 inception
blocks, and a global average pooling layer.

Each inception block is itself defined as a convolutional network
with 4 parallel paths.

1x1 Conv |

Concatenation
| 3x3 Conv, pad 1 | | 5x5 Conv, pad 2 | | 1x1 Conv |
| 1x1 Conv | | 1x1 Conv | | 3x3 MaxPool, pad 1 |

Credits: Dive Into Deep Learning, 2020.

Input
Inception block

| Dense |

| Global AvgPool |

3x3 MaxPool

3x3 MaxPool

3x3 MaxPool

1
3x3 Conv

1

1x1 Conv

1
3x3 MaxPool

1
7x7 Conv

https://d2l.ai/

ResNet (He et al, 2015)

Composition of first layers similar to GooglLeNet, a stack of 4
residual blocks, and a global average pooling layer. Extensions
consider more residual blocks, up to a total of 152 layers
(ResNet-152).

Batch Norm Batch Norm

3x3 Conv 3x3 Conv

_—

! [
! [
! 1
! 1
! [
! [
! [
! 1
! [
: | RelLu | | | 1x1 Conv
1
! [
! 1
! [
! [
! [
! 1
! [
! [

Regular ResNet block vs. ResNet block with1 X 1 convolution.

Credits: Dive Into Deep Learning, 2020.

Global Average Pool

3x3 Max Pooling

SY00|] 19NS8Y X¢ H

https://d2l.ai/

Training networks of this depth is made possible because of the skip connectionsin
the residual blocks. They allow the gradients to shortcut the layers and pass
through without vanishing.

T !

Activation function Activation function
f(x) + x
x
—
f(x) f(x)

r—----"-"=-"77~-~"~-""="="/=""=-= r—---=-"-"=-"7T~-~"=-"7="=""=""=-=
I ! I !
| Weight layer : | Weight layer :
| |

| 4 : | 4 :
: Activation function | : Activation function |
I ! I !
I t ! I t !
I Weight layer : I Weight layer :
- } ______ | T, S !

x X

Credits: Dive Into Deep Learning, 2020.

https://d2l.ai/

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 112, 112] 9,408
BatchNorm2d-2 [-1, 64, 112, 112] 128
ReLU-3 [-1, 64, 112, 112] 0
MaxPool2d-4 [-1, 64, 56, 56] 0
Conv2d-5 [-1, 64, 56, 56] 4,096
BatchNorm2d-6 [-1, 64, 56, 56] 128
ReLU-7 [-1, 64, 56, 56] 0
Conv2d-8 [-1, 64, 56, 56] 36,864
BatchNorm2d-9 [-1, 64, 56, 56] 128
ReLU-10 [-1, 64, 56, 56] 0
Conv2d-11 [-1, 256, 56, 56] 16,384
BatchNorm2d-12 [-1, 256, 56, 56] 512
Conv2d-13 [-1, 256, 56, 56] 16,384
BatchNorm2d-14 [-1, 256, 56, 56] 512
ReLU-15 [-1, 256, 56, 56] 0
Bottleneck-16 [-1, 256, 56, 56] 0
Conv2d-17 [-1, 64, 56, 56] 16,384
BatchNorm2d-18 [-1, 64, 56, 56] 128
ReLU-19 [-1, 64, 56, 56] 0
Conv2d-20 [-1, 64, 56, 56] 36,864
BatchNorm2d-21 [-1, 64, 56, 56] 128
ReLU-22 [-1, 64, 56, 56] 0
Conv2d-23 [-1, 256, 56, 56] 16,384
BatchNorm2d-24 [-1, 256, 56, 56] 512
ReLU-25 [-1, 256, 56, 56] 0
Bottleneck-26 [-1, 256, 56, 56] 0
Conv2d-27 [-1, 64, 56, 56] 16,384
BatchNorm2d-28 [-1, 64, 56, 56] 128
ReLU-29 [-1, 64, 56, 56] 0
Conv2d-30 [-1, 64, 56, 56] 36,864
BatchNorm2d-31 [-1, 64, 56, 56] 128
ReLU-32 [-1, 64, 56, 56] 0
Conv2d-33 [-1, 256, 56, 56] 16,384
BatchNorm2d-34 [-1, 256, 56, 56] 512
ReLU-35 [-1, 256, 56, 56] 0
Bottleneck-36 [-1, 256, 56, 56] 0
Conv2d-37 [-1, 128, 56, 56] 32,768
BatchNorm2d-38 [-1, 128, 56, 56] 256
ReLU-39 [-1, 128, 56, 56] 0
Conv2d-40 [-1, 128, 28, 28] 147,456
BatchNorm2d-41 [-1, 128, 28, 28] 256
ReLU-42 [-1, 128, 28, 28] 0
Conv2d-43 [-1, 512, 28, 28] 65,536
BatchNorm2d-44 [-1, 512, 28, 28] 1,024
Conv2d-45 [-1, 512, 28, 28] 131,072
BatchNorm2d-46 [-1, 512, 28, 28] 1,024
ReLU-47 [-1, 512, 28, 28] 0
Bottleneck-48 [-1, 512, 28, 28] 0
Conv2d-49 [-1, 128, 28, 28] 65,536
BatchNorm2d-50 [-1, 128, 28, 28] 256
ReLU-51 [-1, 128, 28, 28] 0
Conv2d-52 [-1, 128, 28, 28] 147,456
BatchNorm2d-53 [-1, 128, 28, 28] 256

Bottleneck-130 [-1, 1024, 14, 14)] 0
Conv2d-131 [-1, 256, 14, 14)] 262,144
BatchNorm2d-132 [-1, 256, 14, 14] 512
ReLU-133 [-1, 256, 14, 14] 0
Conv2d-134 [-1, 256, 14, 14] 589,824
BatchNorm2d-135 [-1, 256, 14, 14] 512
ReLU-136 [-1, 256, 14, 14] 0
Conv2d-137 [-1, 1024, 14, 14] 262,144
BatchNorm2d-138 [-1, 1024, 14, 14) 2,048
ReLU-139 [-1, 1024, 14, 14] 0
Bottleneck-140 [-1, 1024, 14, 14] 0
Conv2d-141 [-1, 512, 14, 14] 524,288
BatchNorm2d-142 [-1, 512, 14, 14] 1,024
ReLU-143 [-1, 512, 14, 14] 0
Conv2d-144 [-1, 512, 7, 71 2,359,296
BatchNorm2d-145 (-1, 512, 7, 7] 1,024
ReLU-146 (-1, 512, 7, 7] 0
Conv2d-147 [-1, 2048, 7, 7] 1,048,576
BatchNorm2d-148 [-1, 2048, 7, 7] 4,096
Conv2d-149 [-1, 2048, 7, 7] 2,097,152
BatchNorm2d-150 [-1, 2048, 7, 7] 4,096
ReLU-151 [-1, 2048, 7, 7] 0
Bottleneck-152 [-1, 2048, 7, 7] 0
Conv2d-153 (-1, siz, 7, 7] 1,048,576
BatchNorm2d-154 [-1, 512, 7, 71 1,024
ReLU-155 [-1, 512, 7, 7] 0
Conv2d-156 [-1, 512, 7, 7] 2,359,296
BatchNorm2d-157 [-1, 512, 7, 7] 1,024
ReLU-158 [-1, 512, 7, 71 0
Conv2d-159 [-1, 2048, 7, 7] 1,048,576
BatchNorm2d-160 [-1, 2048, 7, 7] 4,096
ReLU-161 [-1, 2048, 7, 7] 0
Bottleneck-162 [-1, 2048, 7, 7] 0
Conv2d-163 (-1, 512, 7, 7] 1,048,576
BatchNorm2d-164 (-1, 512, 7, 7] 1,024
ReLU-165 [-1, 512, 7, 71 0
Conv2d-166 [-1, 512, 7, 7] 2,359,296
BatchNorm2d-167 [-1, 512, 7, 71 1,024
ReLU-168 (-1, 512, 7, 7] 0
Conv2d-169 [-1, 2048, 7, 7] 1,048,576
BatchNorm2d-170 [-1, 2048, 7, 7] 4,096
ReLU-171 [-1, 2048, 7, 7] 0
Bottleneck-172 [-1, 2048, 7, 7] 0
AvgPo0l12d-173 [-1, 2048, 1, 1] 0
Linear-174 [-1, 1000] 2,049,000
Total params: 25,557,032
Trainable params: 25,557,032
Non-trainable params: 0
Input size (MB): 0.57
Forward/backward pass size (MB): 286.56
Params size (MB): 97.49
Estimated Total Size (MB): 384.62

47/ 62

The benefits of depth

28.2

‘ 152 layers ’

A\
\
\
| 22 layers ‘ ‘ 19 Iayers |
)

3 57 I_ L I | 8 layers ‘ ‘ 8 layers ‘ shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

48/ 62

Under the hood

Under the hood

Understanding what is happening in deep neural networks after training is complex
and the tools we have are limited.

In the case of convolutional neural networks, we can look at:

e the network's kernels as images

internal activations on a single sample as images

distributions of activations on a population of samples

derivatives of the response with respect to the input

maximum-response synthetic samples

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 49/62

https://fleuret.org/ee559/

Looking at filters

LeNet's first convolutional layer, all filters.

B P M S T L R RN TN TR A g RS T

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

https://fleuret.org/ee559/

LeNet's second convolutional layer, first 32 filters.

AESAINTEREN A AR D T LAl SR
F = PR P I T b L P L R e R LS
FLrpl PO SR SRS SRR RN RS SN
R Lottt Shad e b T Lebgda BT L Tt e
T R T T e N e T TN B e S B R TR O R Y
M TR AL AR S LD S TR RS YR g i

iRl RN AN T R ED NN R L
Lt = TR A L R B E I T Lo L T i
o TR [o T L SN i B T S R Y T R T T e R e
Tl LR AL SR S AP G TR R L

AT S o R o R A T R R i e i B N i TR
o O G L R P S Y T 0 O o R R R) T e B S
ek Rl LR o L WL e P b
ST ED RN ST RS L SR DT R S e A
WRIWEL L 0 U e e N T G Ll I T T R ek T i
AR 4, L A SN i e RS e HAD L S
el Foted ok ok P ol T g Lo Ll LIS T Pea T, b i
AR ENRUCNE R e - PE Y S MR LA N
OOF o P e B S S N s L S W TN L R R R T
o R L A T o Y L R T A M i
TP L ER R A A A L O T A R T R A N A RIT
b~ T P il E PRl T ol Tk e Lo IO bl T Y
s CHEENTARNBEY SR AL F AR TS ENE
AR E A AN G E W e B LT S A
B R AT N) e Ry R TS T O e L R R e P R R D TN
MERT A TOFVET ARV IR R e G
i A e TR BRI E A S A LT R D E R R
B R L R S T S e e R T B R e P R TR
af Ll YAl R P PRI AR T e NS DI Ta P MEARFE Gl R,

ENAGREMNUET R E N LR IO e AN RS ke R M e
PR ARSI ISR TA IS SR AR EE AR Y
Cli el B e L PR B AL SR AT R e HEE e R T o B

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

https://fleuret.org/ee559/

AlexNet's first convolutional layer, first 20 filters.

AHEAS TEFFELIISON == si e
PR N=E R NS =T E NS
EHN=L BFFEEIIEENEETRENE

rancois Fleuret, EE559 Deep Learning, EPFL. 52/62

https://fleuret.org/ee559/

Maximum response samples

Convolutional networks can be inspected by looking for synthetic input images x
that maximize the activation hy 4(x) of a chosen convolutional kernel u at layer £
and index d in the layer filter bank.

These samples can be found by gradient ascent on the input space:

0d(x) = ||hea(x)]]3
Xo ~ U[O, 1]C><H><W

Xt+1 = Xt + YVx K,d(xt)

53/62

VGG-16, convolutional layer 1-1, a few of the 64 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54/62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 2-1, a few of the 128 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 55/62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 3-1, a few of the 256 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 56/62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 4-1, a few of the 512 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 57/62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 5-1, a few of the 512 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 58/62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

Some observations:

e The first layers appear to encode direction and color.
e Thedirection and color filters get combined into grid and spot textures.

e These textures gradually get combined into increasingly complex patterns.

The network appears to learn a hierarchical composition of patterns.

Low-Level Mid-Level |High-Level Trainable
— — —_—
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 20131

59/62

What if we build images that maximize the activation of a chosen class output?

60/ 62

What if we build images that maximize the activation of a chosen class output?

The left image is predicted with 99.9% confidence as a magpie!

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 60/62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

Journey on the Deep Dream

Deep Dream. Start from an image X, offset by a random jitter, enhance some layer
activation at multiple scales, zoom in, repeat on the produced image X 1.

https://www.youtube.com/watch?v=SCE-QeDfXtA

Biological plausibility

a Encading Decoding

Stimulus Neurons Behavior

b Ve

RGC LGN va PIT [« AIT

B-ofop roy oy o

- =l < - - - -« - - ~ inkd - -
'l o [.
. P K
’ ’ ‘
>

Spatial convolution

over image input

Operations in linear-nonlinear layer

)
*E*ﬁ*@

Xl Threshold Pool Normalize

"Deep hierarchical neural networks are beginning to transform neuroscientists’
ability to produce quantitatively accurate computational models of the sensory
systems, especially in higher cortical areas where neural response properties had

previously been enigmatic.”

Credits: Yamins et al, Using goal-driven deep learning models to understand sensory cortex, 2016.

62/62

Thank you!

