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Agenda for today
How to make neural networks see?

1. A little history

2. Convolutions

3. Pooling

4. Convolutional networks

5. Under the hood
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A little history
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Visual perception
Hubel and Wiesel, 1959-1962

David Hubel and Torsten Wiesel discover the neural basis of visual perception.

Awarded the Nobel Prize of Medicine in 1981 for their discovery.
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Hubel and Wiesel

Hubel and Wiesel Cat ExperimentHubel and Wiesel Cat Experiment
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https://www.youtube.com/watch?v=IOHayh06LJ4


Hubel and Wiesel

Hubel & Wiesel 1: IntroHubel & Wiesel 1: Intro
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https://www.youtube.com/watch?v=y_l4kQ5wjiw


―――
Credits: Hubel and Wiesel, Receptive �elds, binocular interaction and functional architecture in the cat's visual cortex, 1962. 5 / 62

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/


―――
Credits: Hubel and Wiesel, Receptive �elds, binocular interaction and functional architecture in the cat's visual cortex, 1962. 6 / 62

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/


The Mark-1 Perceptron

Rosenblatt, 1957-61

Rosenblatt builds the �rst implementation of a neural network.

The network is an anlogic circuit. Parameters are potentiometers.

―――
Credits: Frank Rosenblatt, Principle of Neurodynamics, 1961. 7 / 62

http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf


The Mark-1 Perceptron

"If we show the perceptron a stimulus, say a square, and associate a response to
that square, this response will immediately generalize perfectly to all transforms of
the square under the transformation group [...]."

This is quite similar to Hubel and Wiesel's simple and complex cells!

―――
Credits: Frank Rosenblatt, Principle of Neurodynamics, 1961. 8 / 62

http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf


AI winter
Minsky and Papert, 1969+

Minsky and Papert prove a series of impossibility results for the perceptron (or
rather, a narrowly de�ned variant thereof).

AI winter follows.

 

―――
Credits: Minsky and Papert, Perceptrons: an Introduction to Computational Geometry, 1969. 9 / 62



Automatic differentiation

Werbos, 1974

Werbos formulate an arbitrary function as a computational graph

Symbolic derivatives are computed by dynamic programming.

―――
Credits: Paul Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, 1974. 10 / 62



Neocognitron

Fukushima, 1980

Fukushima proposes a direct neural network implementation of the hierarchy
model of the visual nervous system of Hubel and Wiesel.

―――
Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980. 11 / 62

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf


Convolutions Feature hierarchy

Neocognitron

Built upon convolutions and enables the composition of a feature hierarchy.

Biologically-inspired training algorithm, which proves to be largely inef�cient.

―――
Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980. 12 / 62

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf


Rumelhart et al, 1986

Rumelhart and Hinton introduce
backpropagation in multi-layer
networks with sigmoid non-
linearities and sum of squares loss
function.

They advocate for batch gradient
descent in supervised learning.

Discuss online gradient descent,
momentum and random
initialization.

Depart from biologically plausible
training algorithms.

Backpropagation

―――
Credits: Rumelhart et al, Learning representations by back-propagating errors, 1986. 13 / 62

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf


Convolutional networks
LeCun, 1990

LeCun trains a convolutional network by backpropagation.

He advocates for end-to-end feature learning in image classi�cation.

―――
Credits: LeCun et al, Handwritten Digit Recognition with a Back-Propagation Network, 1990. 14 / 62

http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf


LeNet-1 (LeCun et al, 1993)

Convolutional Network Demo from 1993Convolutional Network Demo from 1993
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https://www.youtube.com/watch?v=FwFduRA_L6Q


AlexNet
Krizhevsky et al, 2012

Krizhevsky trains a convolutional network on ImageNet with two GPUs.

16.4% top-5 error on ILSVRC'12, outperforming all other entries by 10% or
more.

This event triggers the deep learning revolution.
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Convolutions
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Convolutions
If they were handled as normal "unstructured" vectors, high-dimensional signals
such as sound samples or images would require models of intractable size.

E.g., a linear layer taking  RGB images as input and producing an image

of same size would require

of memory using float32, which excess memory capacity.

This requirement is also inconsistent with the intuition that such large signals have
some "invariance in translation". A representation meaningful at a certain location
can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear transformation
locally everywhere while preserving the signal structure.

256 × 256

(256 × 256 × 3) ≈ 3.87 × 10 ≈ 144GB2 10

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 17 / 62

https://fleuret.org/ee559/


Given an input vector  and a convolutional kernel , the discrete

convolution  is a vector of size  such that

Technically,  denotes the cross-correlation operator. However, most machine

learning libraries call it convolution.

x ∈ RW u ∈ Rw

x⊛ u W − w + 1

(x⊛ u)  =  x  u  .i

m=1

∑
w

m+i m

⊛
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Convolutions
Convolutions can implement differential operators:

or crude template matchers:

Convolutions generalize to multi-dimensional tensors:

In its most usual form, a convolution takes as input a 3D tensor ,

called the input feature map.

A kernel  slides across the input feature map, along its height and

width. The size  is the size of the receptive �eld.

At each location, the element-wise product between the kernel and the input
elements it overlaps is computed and the results are summed up.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ⊛ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0)

x ∈ RC×H×W

u ∈ RC×h×w

h × w
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―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 20 / 62

https://fleuret.org/ee559/


The �nal output  is a 2D tensor of size  called the

output feature map and such that:

where  and  are shared parameters to learn.

 convolutions can be applied in the same way to produce a 

 feature map, where  is the depth.

Swiping across channels with a 3D convolution usually makes no sense, unless
the channel index has some metric mearning.

Convolutions have three additional parameters:

The padding speci�es the size of a zeroed frame added arount the input.

The stride speci�es a step size when moving the kernel across the signal.

The dilation modulates the expansion of the �lter without adding weights.

o (H − h + 1) × (W − w + 1)

o  = b  +  (x  ⊛ u  )[j, i] = b  +    x  u  j,i j,i
c=0

∑
C−1

c c j,i
c=0

∑
C−1

n=0

∑
h−1

m=0

∑
w−1

c,n+j,m+i c,n,m

u b

D

D × (H − h + 1) × (W − w + 1) D
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Convolutions: padding
Padding is useful to control the spatial dimension of the feature map, for example to
keep it constant across layers.

 

―――
Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 22 / 62

https://arxiv.org/abs/1603.07285


Convolutions: strides
Stride is useful to reduce the spatial dimension of the feature map by a constant
factor.

―――
Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 23 / 62

https://arxiv.org/abs/1603.07285


Convolutions: dilation
The dilation modulates the expansion of the kernel support by adding rows and
columns of zeros between coef�cients.

Having a dilation coef�cient greater than one increases the units receptive �eld size
without increasing the number of parameters.

―――
Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 24 / 62

https://arxiv.org/abs/1603.07285


Equivariance
A function  is equivariant to  if .

Parameter sharing used in a convolutional layer causes the layer to be
equivariant to translation.

If an object moves in the input image, its representation will move the same amount in the output.

Equivariance is useful when we know some local function is useful everywhere
(e.g., edge detectors).

Convolution is not equivariant to other operations such as change in scale or
rotation.

f g f(g(x)) = g(f(x))
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Convolution is as matrix
multiplication
As a guiding example, let us consider the convolution of single-channel tensors 

 and :x ∈ R4×4 u ∈ R3×3

x⊛ u =       ⊛      =   ⎣⎢
⎢⎡

4
1
3
6

5
8
6
5

8
8
6
7

7
8
4
8⎦⎥
⎥⎤ ⎣

⎡1
1
3

4
4
3

1
3
1⎦
⎤ [122

126
148
134]
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The convolution operation can be equivalently re-expressed as a single matrix
multiplication:

the convolutional kernel  is rearranged as a sparse Toeplitz circulant matrix,

called the convolution matrix:

the input  is �attened row by row, from top to bottom:

Then,

which we can reshape to a  matrix to obtain .

u

U =                  ⎣⎢
⎢⎡

1
0
0
0

4
1
0
0

1
4
0
0

0
1
0
0

1
0
1
0

4
1
4
1

3
4
1
4

0
3
0
1

3
0
1
0

3
3
4
1

1
3
3
4

0
1
0
3

0
0
3
0

0
0
3
3

0
0
1
3

0
0
0
1⎦⎥
⎥⎤

x

v(x) =                [4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8]
⊤

Uv(x) =     [122 148 126 134]
⊤

2 × 2 x⊛ u
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The same procedure generalizes to  and convolutional kernel 

, such that:

the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix 

of shape  where

each row  identi�es an element of the output feature map,

each column  identi�es an element of the input feature map,

the value  corresponds to the kernel value the element  is multiplied with in output ;

the input  is �attened into a column vector  of shape ;

the output feature map  is obtained by reshaping the 

 column vector  as a 

 matrix.

Therefore, a convolutional layer is a special case of a fully connected layer:

x ∈ RH×W

u ∈ Rh×w

U
(H − h + 1)(W − w + 1) × HW

i

j

U  i,j j i

x v(x) HW × 1

x⊛ u
(H − h + 1)(W − w + 1) × 1 Uv(x)
(H − h + 1) × (W − w + 1)

h = x⊛ u ⇔ v(h) = Uv(x) ⇔ v(h) = W v(x)⊤
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  𝐱   𝐡 

  𝐮 

  ∗ 

is equivalent to

flatten matmul reshape

U

x h
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Pooling
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Pooling
When the input volume is large, pooling layers can be used to reduce the input
dimension while preserving its global structure, in a way similar to a down-scaling
operation.

Consider a pooling area of size  and a 3D input tensor .

Max-pooling produces a tensor  such that

Average pooling produces a tensor  such that

Pooling is very similar in its formulation to convolution.

h × w x ∈ RC×(rh)×(sw)

o ∈ RC×r×s

o  =  x  .c,j,i
n<h,m<w

max c,rj+n,si+m

o ∈ RC×r×s

o  =    x  .c,j,i
hw

1

n=0

∑
h−1

m=0

∑
w−1

c,rj+n,si+m
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Pooling

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 31 / 62

https://fleuret.org/ee559/


Invariance
A function  is invariant to  if .

Pooling layers provide invariance to any permutation inside one cell.

It results in (pseudo-)invariance to local translations.

This helpful if we care more about the presence of a pattern rather than its
exact position.

f g f(g(x)) = f(x)

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 32 / 62

https://fleuret.org/ee559/


Convolutional networks
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A convolutional network is generically de�ned as a composition of convolutional
layers ( ), pooling layers ( ), linear recti�ers ( ) and fully connected

layers ( ).

CONV POOL RELU

FC
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The most common convolutional network architecture follows the pattern:

where:

 indicates repetition;

 indicates an optional pooling layer;

 (and usually ), ,  (and usually );

the last fully connected layer holds the output (e.g., the class scores).

INPUT → [[CONV → RELU]*N → POOL?]*M → [FC → RELU]*K → FC

*

POOL?

N ≥ 0 N ≤ 3 M ≥ 0 K ≥ 0 K < 3
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Some common architectures for convolutional networks following this pattern
include:

, which implements a linear classi�er ( ).

, which implements a -layer MLP.

.

.

.

INPUT → FC N = M = K = 0

INPUT → [FC → RELU]∗K → FC K

INPUT → CONV → RELU → FC

INPUT → [CONV → RELU → POOL]*2 → FC → RELU → FC

INPUT → [[CONV → RELU]*2 → POOL]*3 → [FC → RELU]*2 → FC
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LeNet-5
LeCun et al, 1998

Composition of two  layers, followed by a block of fully-

connected layers.

CONV + POOL

―――
Credits: Dive Into Deep Learning, 2020. 37 / 62

https://d2l.ai/


LeNet-5
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1            [-1, 6, 28, 28]             156
              ReLU-2            [-1, 6, 28, 28]               0
         MaxPool2d-3            [-1, 6, 14, 14]               0
            Conv2d-4           [-1, 16, 10, 10]           2,416
              ReLU-5           [-1, 16, 10, 10]               0
         MaxPool2d-6             [-1, 16, 5, 5]               0
            Conv2d-7            [-1, 120, 1, 1]          48,120
              ReLU-8            [-1, 120, 1, 1]               0
            Linear-9                   [-1, 84]          10,164
             ReLU-10                   [-1, 84]               0
           Linear-11                   [-1, 10]             850
       LogSoftmax-12                   [-1, 10]               0
================================================================
Total params: 61,706                                            
Trainable params: 61,706                                        
Non-trainable params: 0                                         
----------------------------------------------------------------
Input size (MB): 0.00                                           
Forward/backward pass size (MB): 0.11                           
Params size (MB): 0.24                                          
Estimated Total Size (MB): 0.35                                 
----------------------------------------------------------------
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AlexNet (Krizhevsky et al, 2012)

Composition of a 8-layer convolutional neural
network with a 3-layer MLP.

The original implementation was made of two
parts such that it could �t within two GPUs.

LeNet vs. AlexNet

―――
Credits: Dive Into Deep Learning, 2020. 39 / 62

https://d2l.ai/


----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 55, 55]          23,296
              ReLU-2           [-1, 64, 55, 55]               0
         MaxPool2d-3           [-1, 64, 27, 27]               0
            Conv2d-4          [-1, 192, 27, 27]         307,392
              ReLU-5          [-1, 192, 27, 27]               0
         MaxPool2d-6          [-1, 192, 13, 13]               0
            Conv2d-7          [-1, 384, 13, 13]         663,936
              ReLU-8          [-1, 384, 13, 13]               0
            Conv2d-9          [-1, 256, 13, 13]         884,992
             ReLU-10          [-1, 256, 13, 13]               0
           Conv2d-11          [-1, 256, 13, 13]         590,080
             ReLU-12          [-1, 256, 13, 13]               0
        MaxPool2d-13            [-1, 256, 6, 6]               0
          Dropout-14                 [-1, 9216]               0
           Linear-15                 [-1, 4096]      37,752,832
             ReLU-16                 [-1, 4096]               0
          Dropout-17                 [-1, 4096]               0
           Linear-18                 [-1, 4096]      16,781,312
             ReLU-19                 [-1, 4096]               0
           Linear-20                 [-1, 1000]       4,097,000
================================================================
Total params: 61,100,840                                        
Trainable params: 61,100,840                                    
Non-trainable params: 0                                         
----------------------------------------------------------------
Input size (MB): 0.57                                           
Forward/backward pass size (MB): 8.31                           
Params size (MB): 233.08                                        
Estimated Total Size (MB): 241.96                               
----------------------------------------------------------------
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VGG (Simonyan and
Zisserman, 2014)

Composition of 5 VGG blocks
consisting of 

layers, followed by a block of
fully connected layers.

The network depth increased
up to 19 layers, while the
kernel sizes reduced to 3.

AlexNet vs. VGG

CONV + POOL

―――
Credits: Dive Into Deep Learning, 2020. 41 / 62

https://d2l.ai/


The effective receptive �eld is the part of the visual input that affects a given unit
indirectly through previous convolutional layers. It grows linearly with depth.

E.g., a stack of two  kernels of stride  has the same effective receptive �eld as

a single  kernel, but fewer parameters.

3 × 3 1
5 × 5
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----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]           1,792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]          36,928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]          73,856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]         147,584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]         295,168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]         590,080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]         590,080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]       1,180,160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]       2,359,808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]       2,359,808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]       2,359,808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]       2,359,808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]       2,359,808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]     102,764,544
             ReLU-33                 [-1, 4096]               0
          Dropout-34                 [-1, 4096]               0
           Linear-35                 [-1, 4096]      16,781,312
             ReLU-36                 [-1, 4096]               0
          Dropout-37                 [-1, 4096]               0
           Linear-38                 [-1, 1000]       4,097,000
================================================================
Total params: 138,357,544                                       
Trainable params: 138,357,544                                   
Non-trainable params: 0                                         
----------------------------------------------------------------
Input size (MB): 0.57                                           
Forward/backward pass size (MB): 218.59                         
Params size (MB): 527.79                                        
Estimated Total Size (MB): 746.96                               
----------------------------------------------------------------
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GoogLeNet (Szegedy et al, 2014)

Composition of two  layers, a stack of 9 inception

blocks, and a global average pooling layer.

Each inception block is itself de�ned as a convolutional network
with 4 parallel paths.

Inception block

CONV + POOL

―――
Credits: Dive Into Deep Learning, 2020. 44 / 62

https://d2l.ai/


ResNet (He et al, 2015)

Composition of �rst layers similar to GoogLeNet, a stack of 4
residual blocks, and a global average pooling layer. Extensions
consider more residual blocks, up to a total of 152 layers
(ResNet-152).

Regular ResNet block vs. ResNet block with  convolution.1 × 1

―――
Credits: Dive Into Deep Learning, 2020. 45 / 62

https://d2l.ai/


Training networks of this depth is made possible because of the skip connections in
the residual blocks. They allow the gradients to shortcut the layers and pass
through without vanishing.

―――
Credits: Dive Into Deep Learning, 2020. 46 / 62

https://d2l.ai/


----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
            Conv2d-5           [-1, 64, 56, 56]           4,096
       BatchNorm2d-6           [-1, 64, 56, 56]             128
              ReLU-7           [-1, 64, 56, 56]               0
            Conv2d-8           [-1, 64, 56, 56]          36,864
       BatchNorm2d-9           [-1, 64, 56, 56]             128
             ReLU-10           [-1, 64, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]          16,384
      BatchNorm2d-12          [-1, 256, 56, 56]             512
           Conv2d-13          [-1, 256, 56, 56]          16,384
      BatchNorm2d-14          [-1, 256, 56, 56]             512
             ReLU-15          [-1, 256, 56, 56]               0
       Bottleneck-16          [-1, 256, 56, 56]               0
           Conv2d-17           [-1, 64, 56, 56]          16,384
      BatchNorm2d-18           [-1, 64, 56, 56]             128
             ReLU-19           [-1, 64, 56, 56]               0
           Conv2d-20           [-1, 64, 56, 56]          36,864
      BatchNorm2d-21           [-1, 64, 56, 56]             128
             ReLU-22           [-1, 64, 56, 56]               0
           Conv2d-23          [-1, 256, 56, 56]          16,384
      BatchNorm2d-24          [-1, 256, 56, 56]             512
             ReLU-25          [-1, 256, 56, 56]               0
       Bottleneck-26          [-1, 256, 56, 56]               0
           Conv2d-27           [-1, 64, 56, 56]          16,384
      BatchNorm2d-28           [-1, 64, 56, 56]             128
             ReLU-29           [-1, 64, 56, 56]               0
           Conv2d-30           [-1, 64, 56, 56]          36,864
      BatchNorm2d-31           [-1, 64, 56, 56]             128
             ReLU-32           [-1, 64, 56, 56]               0
           Conv2d-33          [-1, 256, 56, 56]          16,384
      BatchNorm2d-34          [-1, 256, 56, 56]             512
             ReLU-35          [-1, 256, 56, 56]               0
       Bottleneck-36          [-1, 256, 56, 56]               0
           Conv2d-37          [-1, 128, 56, 56]          32,768
      BatchNorm2d-38          [-1, 128, 56, 56]             256
             ReLU-39          [-1, 128, 56, 56]               0
           Conv2d-40          [-1, 128, 28, 28]         147,456
      BatchNorm2d-41          [-1, 128, 28, 28]             256
             ReLU-42          [-1, 128, 28, 28]               0
           Conv2d-43          [-1, 512, 28, 28]          65,536
      BatchNorm2d-44          [-1, 512, 28, 28]           1,024
           Conv2d-45          [-1, 512, 28, 28]         131,072
      BatchNorm2d-46          [-1, 512, 28, 28]           1,024
             ReLU-47          [-1, 512, 28, 28]               0
       Bottleneck-48          [-1, 512, 28, 28]               0
           Conv2d-49          [-1, 128, 28, 28]          65,536
      BatchNorm2d-50          [-1, 128, 28, 28]             256
             ReLU-51          [-1, 128, 28, 28]               0
           Conv2d-52          [-1, 128, 28, 28]         147,456
      BatchNorm2d-53          [-1, 128, 28, 28]             256

...

...

Bottleneck-130         [-1, 1024, 14, 14]               0
    Conv2d-131          [-1, 256, 14, 14]         262,144
BatchNorm2d-132          [-1, 256, 14, 14]             512
      ReLU-133          [-1, 256, 14, 14]               0
    Conv2d-134          [-1, 256, 14, 14]         589,824
BatchNorm2d-135          [-1, 256, 14, 14]             512
      ReLU-136          [-1, 256, 14, 14]               0
    Conv2d-137         [-1, 1024, 14, 14]         262,144
BatchNorm2d-138         [-1, 1024, 14, 14]           2,048
      ReLU-139         [-1, 1024, 14, 14]               0
Bottleneck-140         [-1, 1024, 14, 14]               0
    Conv2d-141          [-1, 512, 14, 14]         524,288
BatchNorm2d-142          [-1, 512, 14, 14]           1,024
      ReLU-143          [-1, 512, 14, 14]               0
    Conv2d-144            [-1, 512, 7, 7]       2,359,296
BatchNorm2d-145            [-1, 512, 7, 7]           1,024
      ReLU-146            [-1, 512, 7, 7]               0
    Conv2d-147           [-1, 2048, 7, 7]       1,048,576
BatchNorm2d-148           [-1, 2048, 7, 7]           4,096
    Conv2d-149           [-1, 2048, 7, 7]       2,097,152
BatchNorm2d-150           [-1, 2048, 7, 7]           4,096
      ReLU-151           [-1, 2048, 7, 7]               0
Bottleneck-152           [-1, 2048, 7, 7]               0
    Conv2d-153            [-1, 512, 7, 7]       1,048,576
BatchNorm2d-154            [-1, 512, 7, 7]           1,024
      ReLU-155            [-1, 512, 7, 7]               0
    Conv2d-156            [-1, 512, 7, 7]       2,359,296
BatchNorm2d-157            [-1, 512, 7, 7]           1,024
      ReLU-158            [-1, 512, 7, 7]               0
    Conv2d-159           [-1, 2048, 7, 7]       1,048,576
BatchNorm2d-160           [-1, 2048, 7, 7]           4,096
      ReLU-161           [-1, 2048, 7, 7]               0
Bottleneck-162           [-1, 2048, 7, 7]               0
    Conv2d-163            [-1, 512, 7, 7]       1,048,576
BatchNorm2d-164            [-1, 512, 7, 7]           1,024
      ReLU-165            [-1, 512, 7, 7]               0
    Conv2d-166            [-1, 512, 7, 7]       2,359,296
BatchNorm2d-167            [-1, 512, 7, 7]           1,024
      ReLU-168            [-1, 512, 7, 7]               0
    Conv2d-169           [-1, 2048, 7, 7]       1,048,576
BatchNorm2d-170           [-1, 2048, 7, 7]           4,096
      ReLU-171           [-1, 2048, 7, 7]               0
Bottleneck-172           [-1, 2048, 7, 7]               0
 AvgPool2d-173           [-1, 2048, 1, 1]               0
    Linear-174                 [-1, 1000]       2,049,000

================================================================
Total params: 25,557,032                                        
Trainable params: 25,557,032                                    
Non-trainable params: 0                                         
----------------------------------------------------------------
Input size (MB): 0.57                                           
Forward/backward pass size (MB): 286.56                         
Params size (MB): 97.49                                         
Estimated Total Size (MB): 384.62                               
----------------------------------------------------------------
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The bene�ts of depth
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Under the hood
Understanding what is happening in deep neural networks after training is complex
and the tools we have are limited.

In the case of convolutional neural networks, we can look at:

the network's kernels as images

internal activations on a single sample as images

distributions of activations on a population of samples

derivatives of the response with respect to the input

maximum-response synthetic samples

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 49 / 62

https://fleuret.org/ee559/


Looking at �lters
 
 
 
 
 

LeNet's �rst convolutional layer, all �lters.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 50 / 62

https://fleuret.org/ee559/


LeNet's second convolutional layer, �rst 32 �lters.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 51 / 62

https://fleuret.org/ee559/


AlexNet's �rst convolutional layer, �rst 20 �lters.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 52 / 62

https://fleuret.org/ee559/


Maximum response samples
Convolutional networks can be inspected by looking for synthetic input images 

that maximize the activation  of a chosen convolutional kernel  at layer 

and index  in the layer �lter bank.

These samples can be found by gradient ascent on the input space:

x
h  (x)ℓ,d u ℓ

d

 (x)ℓ,d

x0

xt+1

= ∥h  (x)∥  ℓ,d 2
2

∼ U [0, 1]C×H×W

= x  + γ∇   (x  )t x ℓ,d t
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VGG-16, convolutional layer 1-1, a few of the 64 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 / 62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 2-1, a few of the 128 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 55 / 62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 3-1, a few of the 256 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 56 / 62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 4-1, a few of the 512 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 57 / 62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 5-1, a few of the 512 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 58 / 62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


Some observations:

The �rst layers appear to encode direction and color.

The direction and color �lters get combined into grid and spot textures.

These textures gradually get combined into increasingly complex patterns.

The network appears to learn a hierarchical composition of patterns.
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What if we build images that maximize the activation of a chosen class output?
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What if we build images that maximize the activation of a chosen class output?

The left image is predicted with 99.9% con�dence as a magpie!

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 60 / 62

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


Deep Dream. Start from an image , offset by a random jitter, enhance some layer

activation at multiple scales, zoom in, repeat on the produced image .

Journey on the Deep DreamJourney on the Deep Dream

x  t

x  t+1
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https://www.youtube.com/watch?v=SCE-QeDfXtA


Biological plausibility

"Deep hierarchical neural networks are beginning to transform neuroscientists’
ability to produce quantitatively accurate computational models of the sensory
systems, especially in higher cortical areas where neural response properties had
previously been enigmatic."

―――

Credits: Yamins et al, Using goal-driven deep learning models to understand sensory cortex, 2016.
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Thank you!
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