Deep Learning

Lecture 7: Recurrent neural networks

Prof. Stéphane Gaiffas
https://stephanegaiffas.github.io

J ‘Q université

LABORATOIRE DE PROBABILITES o =
STATISTIQUE & MODELISATION ; D I D E Ro I

l

Université de Paris

https://stephanegaiffas.github.io/

Today

How to use representation learning with ?

Embeddings

Temporal convolutions

Recurrent neural networks

Applications

Beyond sequences

2/95

Examples of sequences

Audio signals

A VAVAIY LIIMELIU AL WSV YL Y LY WA

Lacus laoreet non curabitur gravid
Faucibus interdum posuere lorem i
Aliquam faucibus purus in massa t
Auctor urna nunc id cursus metus.
Velit egestas dui id ornare arcu odi
Et tortor consequat id porta nibh vi
Id diam maecenas ultricies mi eget
Fermentum odio eu feugiat pretiun
Tincidunt nunc pulvinar sapien et |
Semper quis lectus nulla at volutpz
Elementum tempus egestas sed sec
Mauris pellentesque pulvinar pelle
Viverra maecenas accumsan lacus

Text

Time series

Real-world problems with a sequence structure

e Sequence classification:

o

sentiment analysis

o

activity/action recognition

o]

DNA sequence classification

action selection

o]

e Sequence synthesis:
o text synthesis
o music synthesis

o motion synthesis

e Sequence-to-sequence translation:
o speech recognition
o texttranslation

o part-of-speech tagging

4/95

Prediction problems

one to one one to many many to one many to many many to many

e One toone. Vanilla Neural Networks

¢ One to many. Image Captioning: image/sequence of words

e Many to one. Sentiment classification: sequence of words/sentiment
e Many to many. Translation: sequence of words/sequence of words

e Many to many. Video classification on frame level: sequence of image/sequence
of label

5/95

Limitations of (feed-forward) neural networks
e They can't deal with sequential or "temporal" data
e They lack memory
e They have a fixed architecture: fixed input size and fixed output size

Recurrent neural networks are used to overcome successfully these limitations

[_ENGLisH J .
The stratosphere extends from about ‘ ‘
10km to about 50km in altitude. %

azm $% -

HBALS D= o 10kmLE o
50km77kX| &gl Lot L)
° ‘

BB BE 10km HS *
50km DFFEICHDET.

[Google Translate System - 2016]

(o)
2
the end really

o e o
The 0) 0 were dry enjoyed)
0

first the lecture

fifteen minutes

[Socher 2015]

6/95

Embeddings

Mostly for Natural Language Processing (NLP)

Natural Language Processing

e Sentence/Document level Classification (topic, sentiment)
e Topic modeling (LDA, ...)
e Translation
e Chatbots / dialogue systems / assistants
Useful open source projects
® gensim

® spacy

® huggingface

Word representation

e Words are basically indexed (replaced by an integer) and/or represented as 1-
hot vectors: "dog" becomes 42

e Possibly very large vocabulary V' of possible words

e We canreplace words by word-pieces using a tokenizer to end up with 20K
tokens

e Innearly all deep learning tasks, words or tokens are replaced by embeddings
or embedding vectors

e Eachtokenisreplaced by avectore & RE where E is the dimension of the
embeddings, usually between 32 and 512

e Embeddings are learned just as any other weight in the neural network
e Parameter sharing: same embedding each time the same token is seen

e Word/token embeddings are assets for most languages

9/95

Embeddings for text classification

o J L o]

wo 1 w1 don’t w2 hate w3 it

e Firstlayer: embedding E of size |V | X E

e Embeddings are averaged across the sequence of words: a single vector
h € R¥ describes the whole sentence

e hisfedto adense layer that predicts the label, with softmax activation and
cross-entropy loss

Joulin, Armand, et al. "Bag of tricks for efficient text classification." FAIR 2016

Embeddings for text classification

Input z € Nlength(x)

u = Embedding(z) € RF*length(x)

e v = mean(u) € RF

y = softmax(Wwv + b) € Ag where Ax C RE is the simplex

Joulin, Armand, et al. "Bag of tricks for efficient text classification." FAIR 2016

Embeddings for text classification

o J L o]

wo 1 w1 don’t w2 hate w3 it

e Very efficient (speed and accuracy) on large datasets

e State-of-the-art (or close to) on several classification, when adding
bigrams/trigrams

e Little gains from depth

Joulin, Armand, et al. "Bag of tricks for efficient text classification." FAIR 2016

Transfer learning for text

e Canwe use transfer learning with word embeddings ? Similar to images: can we
have word representations that are generic enough to transfer from one task
to another?

e Unsupervised or self-supervised learning of word representations

e Unlabelled text data is almost infinite: Wikipedia dumps, Project Gutenberg,
Social Networks, etc.

Idea: use self-supervised training

e Distributional Hypothesis (Harris, 1954): "words are characterized by the
company they keep"

e Learn word embeddings by predicting word contexts. Givenaword e.g. "dog"
and any other word w € V, learn to predict the probability of P[w|dog] that
w occurs in the context of "dog"

e Unsupervised or self-supervised: no need for class labels. Self-supervision
comes from context. Tons of text required to cover rate words correctly

13/95

Word2Vec: CBoW

e CBoW: representing the context as a Continuous Bag-of-Word

e Self-supervision from large unlabeled corpus of text: slide over an anchor word
and its context:

the carrot is a root vegetable, usually orang

e Similar to text classification with | V| classes

=)

[hidden

)
7 N
(o J(Czm JC 2 (2)

¢ Problem: huge number of classes !

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality. NIPS 2013

Word2Vec: CBoW

¢ Problem: huge number of classes ! Softmax involves a sum over the whole
vocabulary V" at each gradient step : Computationally intractable

Trick: negative sampling
e Sample negative words at random instead of computing the full softmax

e Usesay k = 5 negative words sampled at random instead. Not accurate
enough to estimate accurately

Plas|xi—o, i—1, Tey1, Tesa]

e Butit's agood enough approximation to train useful word embedding
parameters

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." NIPS 2013
http://sebastianruder.com/word-embeddings-softmax/index.html
15/95

http://sebastianruder.com/word-embeddings-softmax/index.html

Word2Vec: Skip Gram

o) ()) ()

e Given the central word, predict occurence of other words in its context.

e Widely used in practice

e Again Negative Sampling is used as a cheaper alternative to full softmax
Evaluation and Related methods
Always difficult to evaluate unsupervised tasks

e Other popular method: GloVe (Socher et al.)

e http://nlp.stanford.edu/projects/glove/

16/95

http://nlp.stanford.edu/projects/glove/

Word2Vec

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S

GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA psSNUMBER GREYISH SCRAPED KBIT/S

NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Colobert et al. 2011, Mikoloy, et al. 2013

Word2Vec

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA psSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Compositionality

Czech + currency | Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche
Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Colobert et al. 2011, Mikoloy, et al. 2013

Word analogies

Country and Capital Vectors Projected by PCA

2 T T T T
China<
*Beijing
15 Russias
Japanx
1 Moscow
Turkey(>Ankara XTOkyO
0.5 F
Poland«
= Germ;inw
France “Warsaw
s =>Berlin
0.5 | ltaly< Paris
Greece: x -=>Athens
1 | Spain Rome
% »Madrid
1.5 | Portugal JLisbon
_2 l 1 | 1 l 1 l

Take away on embeddings

For text applications, inputs of neural networks are embeddings

e Little training data and large vocabulary not well covered by training data: use
transfer learning with pre-trained embeddings

e Large training data with labels: learn directly task-specific embedding in
supervised mode

e These methods use Bag-of-Words (BoW): they ignore the order in word
sequences

e Depth and non-linear activations on hidden layers are not that useful for Bow
text classification

20/95

Language models

Language models

e Assign a probability to a sequence of words
e Such that plausible sequences have higher probabilities:

P["I like cats"| > P["I table cats"]
P["I like cats"| > P["like I cats"|

e Order is important # bag-of-Words representations from above

22/95

Language models

e Assign a probability to a sequence of words
e Such that plausible sequences have higher probabilities:

P["I like cats"| > P["I table cats"]
P["I like cats"| > P["like I cats"|
e Order is important # bag-of-Words representations from above
Auto-regressive sequence modeling
Pg[wo

Py is parametrized by a neural network

23/95

Language models

e Assign a probability to a sequence of words
e Such that plausible sequences have higher probabilities:

P["I like cats"| > P["I table cats"]
P["I like cats"| > P["like I cats"|
e Order is important # bag-of-Words representations from above
Auto-regressive sequence modeling
Pglwg] x Pglwy |wp]

Py is parametrized by a neural network

24/95

Language models

e Assign a probability to a sequence of words
e Such that plausible sequences have higher probabilities:

P["I like cats"| > P["I table cats"]
P["I like cats"| > P["like I cats"|
e Order is important # bag-of-Words representations from above
Auto-regressive sequence modeling
Pylwg] x Pylwy|wg] X -+ X Pylwy, |wy_1,wn_2, ..., wp]

Py is parametrized by a neural network

25/95

Language models

e Assign a probability to a sequence of words
e Such that plausible sequences have higher probabilities:
P["I like cats"| > P["I table cats"]
P["I like cats"| > P["like I cats"|
e Order is important # bag-of-Words representations from above
Auto-regressive sequence modeling
Pylwg] x Pylwy|wg] X -+ X Pylwy, |wy_1,wn_2, ..., wp]
Py is parametrized by a neural network

Hope: internal representation of the model can better capture the meaning of a
sequence than a Bag-of-Words

26/95

Conditional Language Models

NLP problems expressed as conditional language models
Example 1. Translation problem
e Consider
P[target|source]
e Example: source:"J'aime les chats"andtarget:"I love cats"

¢ Model the output word by word

]PH [w0|SOUI'Ce] X]P)g [w1 |’w0, source] NEEE

27795

Conditional Language Models

NLP problems expressed as conditional language models
Example 2. Question Answering / Dialogue / Chatbot

e Consider

Planswer|question, context]

e context: "John puts two glasses on the table."; "Bob adds two more glasses.";
"Bob leaves the kitchen to play baseball in the garden.”

e question: "How many glasses are there?"

e answer: "There are four glasses."
Example 3. Image captioning

e Consider P[caption|image]

e image — aflat representation of the image in R output by aCNN

28/95

A simple language model

If we use the same idea as before

(o J o J 2]

Fixed context size

Average embeddings (same as CBoW): no sequence information
Concatenate embeddings: introduces many parameters
1D convolution: larger contexts, limit number of parameters

Does not take well into account varying sequence sizes and sequence
dependencies

Temporal convolutions

Temporal convolutions

The simplest approach to sequence processing is to use temporal convolutional
networks (TCNs).

TCNs correspond to standard 1D convolutional networks. They process input
sequences as fixed-size vectors of the maximum possible length.

opt @ @ O O OO OGO OPO0OOCGOO@®O®PO

Hidden

e ©00000000000000

Hidd
e 0 0000000000000

@0 0000000000000

nht @ @ O 0000000000000

A Oord et al. Wavenet: A generative model for raw audio (2016)
31/95

Temporal convolutions

Increasing exponentially the kernel sizes makes the required number of layers grow
as O(log T') of the time window T" taken into account.

Dilated convolutions make the model size grow as O (log T'), while the memory
footprint and computation are O (T log T).

Credits: Philippe Remy, keras-tcn, 2018; Francois Fleuret, EE559 Deep Learning, EPFL. 32/95

https://github.com/philipperemy/keras-tcn
https://fleuret.org/ee559/

Temporal convolutions

Table 1. Evaluation of TCNs and recurrent architectures on synthetic stress tests, polyphonic music modeling, character-level language
modeling, and word-level language modeling. The generic TCN architecture outperforms canonical recurrent networks across a
comprehensive suite of tasks and datasets. Current state-of-the-art results are listed in the supplement. * means that higher is better.
 means that lower is better.

Sequence Modeling Task Model Size (=) Models

LSTM GRU RNN TCN
Seq. MNIST (accuracy™) 70K 87.2 96.2 21.5 99.0
Permuted MNIST (accuracy) TO0K 85.7 87.3 253 97.2
Adding problem T'=600 (loss®) TO0K 0.164 53e-5 0.177 5.8e-5
Copy memory T'=1000 (loss) 16K 0.0204 0.0197 0.0202 3.5e-5
Music JSB Chorales (loss) 300K 8.45 8.43 891 8.10
Music Nottingham (loss) IM 3.29 3.46 4.05 3.07
Word-level PTB (perplexity®) 13M 78.93 92.48 11450 88.68
Word-level Wiki-103 (perplexity) - 48.4 - - 45.19
Word-level LAMBADA (perplexity) - 4186 - 14725 1279
Char-level PTB (bpc?) M 1.36 1.37 1.48 1.31
Char-level text8 (bpc) M 1.50 1.53 1.69 145

Credits: Bai et al, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, 2018.

https://arxiv.org/abs/1803.01271

Recurrent Neural Network

Recurrent Neural Network

[output

<E hidden |

[input

Recurrent Neural Network

[output

CE hidden

[input

Unroll over a sequence (g, 1, 2):

Yo

[ek

Lo

Recurrent Neural Network

[output

CE hidden |

[input

Unroll over a sequence (g, 1, 2):

Yo] [Y1

Recurrent Neural Network

[output

CE hidden |

[input

Unroll over a sequence (g, 1, 2):

wo [) ®

Language Modelling

wy quick Wy brown w3 fox
Yo [Y1 Y2
VVout Wout Wout
q) D ~ N
ho *’(hl > hg
\ A'Wh JWhL J
xo N [xl B { x2 \
|E |E | E
wo the wy quick Wy brown

e input: (wg, w1, ..., wy) = sequence of embeddings words

e output: (w1, w2, ..., ws11) = shifted sequence of embedings

Language Modelling

wy quick Wy brown w3 fox
Yo [Y1 Y2
VVout Wout Wout
e)) e)
ho *’[hl > hg
\ A'Wh JWhL J
4 xo \ [xl N\ 4 xz \
|E |E | E
wo the wy quick Wy brown

e z; = Embedding(w;) € RY
o hy = g(W"hy_y + W=z, +b") € RE (often g = tanh)
e y = softmax(W°h; +b°) € Ak (K = |V here)

How many parameters ?

Language Modelling

wy quick Wy brown w3 fox
Yo [Y1 Y2
VVout Wout Wout
e)) e)
ho *’[hl > hg
\ A'Wh JWhL J
4 xo \ [xl N\ 4 xz \
|E |E | E
wo the wy quick Wy brown

e z; = Embedding(w;) € RY

o hy = g(W"hy_y + W=z, +b") € RE (often g = tanh)

e y = softmax(W°h; +b°) € Ak (K = |V| here)
How many parameters ?

Ex|V| + HxH+HxE+H + KxH+K

Backpropagation through time

Similar as standard backpropagation on unrolled network

Yo

[ik

Lo

Backpropagation through time

Similar as standard backpropagation on unrolled network

Yo] [Y1

[ik)z[ks

T |

Backpropagation through time

Similar as standard backpropagation on unrolled network

Yo][n][Y2
: hidden]z[hidden]z[hidden
T | |

Backpropagation through time

Similar as standard backpropagation on unrolled network

Yo][n][Y2
: hidden)z[hidden)z[hidden
T | |

Similar as training very deep networks with tied parameters

Example between g and yo: W is used twice

Usually truncate the backprop after T' timesteps

Difficulties to train long-term dependencies

Other uses: opinion analysis

Y
Wwout
[ho)W[hy]W:[ho)W hs
L= J L=)L =] s
wo 1 w1 don’t we hate w3 it

e Output is opinion (1 for positive, O for negative)
e Very dependent on words order

e Very flexible network architectures

Other uses: opinion analysis

Lh ol m el e Jell h
) () () (o
E E E E
wo 1 w1 don’t wy hate ws it

e Output is opinion (1 for positive, O for negative)
e Very dependent on words order

e Very flexible network architectures

Stacked RNNs

Recurrent networks can be viewed as layers producing sequences hll:T of
activations.

As for dense layers, recurrent layers can be composed in series to form a stack of
recurrent networks.

o

Bidirectional RNNs

Computing the recurrent states forward in time does not make use of future input
values X; . 1.7, even though there are known

RNNs can be made bidirectional by consuming the sequence in both directions.
Effectively, this amounts to run the same (single direction) RNN twice:

e once over the original sequence X1.1

e once over the reversed sequence X7.1

The resulting recurrent states of the bidirectional RNN is the concatenation of two
resulting sequences of recurrent states

49/95

Long-term dependencies
®) G

et

A —

A A A
¢ Niceidea: allows information along a sequence to persist

e Gradient computed through backpropagation through time: backpropagation
applied to the RNN unrolled along the sequence

e If the sequence is long: many multiplication with the same matrices!

e Leads to the so-called vanishing or exploding gradient problem

Long-term dependencies

I
A

>

l
¢

>

» ® CFT@

e Small number of matrix products

e Gradients do not vanish or explode

e The network can learn short-term dependencies

:
6

>

;

I
A

Long-term dependencies

® ®) @
r 1 1 T I
= A

e S Sl Sl Sl

Longer dependencies require many matrix products: vanishing or exploding
gradients makes it hard with a simple RNN

Introduces a strong bias: the network learns only short-term dependencies

Tricks: gradient clipping, non-saturating activations, ...

but mainly more complicated layers using architectures based on gates

The most popular one is the LSTM

Gating

RNN cells can include a pass-through, or additive paths, so that the recurrent state
does not go repeatedly through a squashing non-linearity. This is identical to skip
connections in ResNet.

hl‘—j. ¢ — +

J

For instance, the recurrent state update can_be a per-component weighted average
of its previous value h;_1 and a full update h;, with the weighting z; depending on
the input and the recurrent state, hence acting as a forget gate.

h; = ¢(xs,hy_1;6)

zy = f(x¢,hy1;6)
ht =2z; ® ht—l -+ (1 — Zt) ® E-t-

53/95

Gating

@®

4%

Long Short Term Memory (LSTM)

Standard RNN

In a standard RNN, the recurrent layer contains a simple computation node

X¢

h; = tanh(W"h,_y + W%z, +b") € R?

Long Short Term Memory (LSTM)

LSTM contains interacting layers that control information flow via gates

| | |

- N N A
> — D -

CEanh>
A [as A
(0] [&m] (0]

—> > —»>

\ J G J

LSTM layers are able to track or memorize information throughout many time steps

1 0 — > I

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Hochreiter, Sepp, and Jirgen Schmidhuber. "Long short-term memory." Neural computation 1997

Long Short Term Memory (LSTM)

A LSTM layer uses a cell state ¢; where it's easy for information to flow

Ci1

9
@

Information is added or removed to cell state through structures called gates

®

Gates optionally let information through, via a sigmoid activation
and pointwise product

Long Short Term Memory (LSTM)

How do LSTM work ?

A
- T\ 4 N T\
—»—® T -
A Lebe A
\I /_> J >\|)—’
© ® ©

Long Short Term Memory (LSTM)

LSTM learns to forget irrelevant parts of the previous state

fi fe=0 Wy [ht—1,2¢] + by)

hi—1

Tt

LSTM learns to selectively update cell state ¢; values

Long Short Term Memory (LSTM)

LSTM learns an output gate that outputs certain parts of the cell state

he A\
@;" op =0 (Wy [hi—1,2¢] + bo)
- A]’Lt = Ot * tanh (Ct)

By
[>

A LSTM learns to forget, update and output

® ©

o
I

|
© ® &)

LSTM

Forget irrelevant information

f fe=0Wy-[hi—1,2¢] + by)

he_1
Tt

e Uses previous hidden state h;_1 and input x;

e Learns to completely forget or keep previous cell state ¢;_1 through a layer

with sigmoid o activation € [0, 1]

LSTM

Identify new information to be stored

, it =0 (Wi lhi—1,2¢) + ;)
ét Ztanh(Wc-[ht_l,xt} + bc)

e Uses previous hidden state h;_1 and input x;

e o layer: decide what values to update

e tanh layer: generate new vector of candidate values that could be added to

the state

LSTM

Update cell state

®
@

J Cy= fixCiq1 +is*Cy

—

~

Apply forget operation to the previous cell state C;_1 using f; x C;_1
Add new candidate values, scaled by how much we decided to update : 2; * é’t

Combine the two to produce new cell state C}

LSTM

output hidden state
he &\
‘? or =0 (Wy [he—1,2¢] + bo)
) o . hy = o * tanh (C})
t—1 ’

Construct hidden state h; (output of the recurrent layer) as a filtered version of the

cell state ¢;
o layer: decide what parts of state ¢; to output
tanh layer : squash values of cell state in [—1, 1]

o; * tanh(C}): output filtered version of cell state

LSTM gradient flow

hy
Ce= fe*xCeoq +ir*Ce

Ct—1 X) P
&))
" o] (o)
t—1 — i

Xt

Ct

S/

Backpropagation from C} to C;_1 requires only element-wise multiplication !
No matrix multiplication: avoids the vanishing gradient problem

Leads to an uninterrupted gradient flow!

Uninterrupted gradient flow!

Co Cq 4 Ca ' C3

-
S : o — —— @
T tanh tanh (Ttanh]
9) 9) 0 &
(o] (tanh | (o] (o](tanh] (o] (o] tanh] (o]
i 9

X1 X2 3

LSTM key ingredients

® ®)
t | t

A [Lebetll
© ® O

1. Maintain a separate cell state ¢; in addition to a hidden state h;

v

v

2. Use gates to control the flow of information
o Forget gate to learn to keep information from previous cell state Cy_;
o |nput gate to learn to store new information in the new cell state C}
o Output gate to learn to return the hidden state

3. Backpropagation from C} to C;_1 does not require matrix multiplication: no
vanishing gradient problem

67/95

Around LSTM: tied forget and input
gates

P@-’ Ct:ft*ct—1+(1_ft)*ét

e Coupled or tied forget and input gates

e Decide what should be kept and forgotten at the same time

Around LSTM: GRU

2t =0 (Wz : [ht—tht])
re =0 (Wr . [ht—laath
iLt = tanh (W . [’)“t * ht—l; I’t])

ht:(l—zt)*ht—1+2t*ibt

A very popular alternative to the LSTM

Combines forget and input gates into a single update gate

Also, it merges the cell and hidden states

Simpler than LSTM and often performs the same
Many other variants!

But main recurrent layers in PyTorch are rnn, 1stmand gru layers

Exploding gradients

Exploding gradients

Gated units prevent gradients from vanishing, but not from exploding.

output/batch_loss_1

100

8.00

e —
4.00 ! et

50.00k 100.0k 150.0k 200.0k 250.0k

Credits: pat-coady. 71/95

https://pat-coady.github.io/rnn/

Gradient clipping

Without clipping With clipping

J(w,b)
J{w,b)

The standard strategy to solve this issue is gradient norm clipping, which rescales
the norm of the gradient to a fixed threshold d when it is above:

: Vf o
= —).

72/95

Orthogonal initialization

Let us consider a simplified RNN, with no inputs, no bias, an identity activation
function o (as in the positive part of a ReLU) and the initial recurrent state hg set to
the identity matrix.

We have,

hy =0 W, x, + W5 h,_; +b,
— Wi}fhht—l
— WTht_l.

For a sequence of size n, it comes
h, = W(W(W(...(Why)...))) = W"hy = W"T = W".

Ideally, we would like W™ to neither vanish nor explode as n increases.

73/95

Orthogonal initialization

Theorem

Let p(A) be the spectral radius of the matrix A, defined as
p(A) = max{|A], ..., | Aa|}-

We have:

e ifp(A) < 1thenlim, . ||A"|| = 0 (= vanishing activations),

e if p(A) > 1thenlim, . ||A"|| = oo (= exploding activations).

74795

Orthogonal initialization

If A is orthogonal, then it is diagonalizable and all its eigenvalues are equal to —1
or 1. In this case, the norm of A” = SA"S~! remains bounded.

e Therefore, initializing W as a random orthogonal matrix will guarantee that
activations will neither vanish nor explode.

¢ |npractice, arandom orthogonal matrix can be found through the SVD
decomposition or the QR factorization of a random matrix.

e Thisinitialization strategy is known as orthogonal initialization.

Exploding activations are also the reason why squashing non-linearity functions
(such as tanh) are preferred in RNNs.

e They avoid recurrent states from exploding by upper bounding || ||.

e (At least when running the network forward.)

75/95

Applications

(Only some)

Sentiment analysis

Softmax

Document Representation

Backward Gated Backward Gated Backward Gated
Neural Network Neural Network Neural Network

Forward Gated Forward Gated / Forward Gated /

Document Composition

Neural Network Neural Network Neural Network
Sentence Representation @ @9@o®®®® (00O0OOO -
Sentence Composition CNN/LSTM CNN/LSTM CNN/LSTM

oo $383E 838833 . 2383

=

Document-level modeling for sentiment analysis (= text classification),
with stacked, bidirectional and gated recurrent networks.

Credits: Duyu Tang et al, Document Modeling with Gated Recurrent Neural Network for Sentiment Classification, 2015. 77795

http://www.aclweb.org/anthology/D15-1167

Language models

Model language as a Markov chain, such that sentences are sequences of words

w 1.7 drawn repeatedly from
P(Wi|Wit1).

This is an instance of sequence synthesis, for which predictions are computed at all
time steps t.

Outputs

Hidden Layers

Inputs

Figure 1: Deep recurrent neural network prediction architecture. The
circles represent network layers, the solid lines represent weighted connections
and the dashed lines represent predictions.

Credits: Alex Graves, Generating Sequences With Recurrent Neural Networks, 2013.

78/95

https://arxiv.org/abs/1308.0850

Sequence synthesis

The same generative architecture applies to any kind of sequences.

E.g., sketch-rnn-demo for sketches defined as sequences of strokes.

https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

Neural machine translation

GPU2 | GPU2

GPU1 i GPU1

. Encoder LSTMs
GPUS GPUS |
8ilayers
GPU3 ;
GPU2 GPU3 |
j

Credits: Yonghui Wu et al, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016. 80/95

https://arxiv.org/abs/1609.08144

Neural machine translation

Encoder En e — 24 — B2z — Ba Bt (=X et es e Bg

Decoder dq e d, e ds s e ds

Credits: Yonghui Wu et al, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016. 81/95

https://arxiv.org/abs/1609.08144

Text-to-speech synthesis

Waveform
Mel Spectrogram Samples
5 Conv Layer WaveNet
Post-Net Mot

Location
Sensitive
Attention

I
l Linear]
[2 Layer I [2LSTM Projection
Pre-Net Layers :
Ll.nea‘r Stop Token
Projection

3 Conv Bidirectional
Layers LSTM

Character
IR _>[Embedding

Image credits: Shen et al, 2017. arXiv:1712.05884.

https://arxiv.org/abs/1712.05884

MariFlow - Self-Driving Mario Kart w/Recurrent Neural Network

Learning to control

A recurrent network playing Mario Kart

https://www.youtube.com/watch?v=Ipi40cb_RsI

Beyond sequences

An increasingly large number of people are defining the networks procedurally in
a data-dependent way (with loops and conditionals), allowing them to change

dynamically as a function of the input data fed to them. It's really very much like a
regular program, except it's parameterized.

Yann LeCun (Director of Al Research, Facebook, 2018)

85/95

Neural computers

oo o O

: ,.,,} o //Amn\ WT .

O"O O..O ...“O..b O

4 sub-stacks (1) 47Sib stacks "B) " Counter 2

states + state 0 nd lnck (1) ad stack (p) p stacks "mmunter 4

FIG. 1. The universal network

Any Turing machine can be simulated by a recurrent neural network
(Siegelmann and Sontag, 1995)

a Controller

Qutput

0

b Read and write heads

Write vector
L] LI -
Erase vector

Write key

Read key

Read mode

Read vectors

{.
Eeeeo orTEeaed

w

d Memory usage
and temporal links

D_/

Networks can be coupled with memory storage to produce neural computers:

e The controller processes the input sequence and interacts with the memory to
generate the output.

e The read and write operations attend to all the memory addresses.

87/95

input (X) and target (y) prediction (y)

e ———

0 5 10 15 20 25 30 35

free gate (f)

35

10 25 30

15 20

allocation gate (g.)

T

10 15 20 25 30 35

A differentiable neural computer being trained to store and recall dense binary
numbers. Upper left: the input (red) and target (blue), as 5-bit words and a 1 bit
interrupt signal. Upper right: the model's output

Programs as neural nets

The topology of a recurrent network unrolled through time is dynamic.
It depends on:

e theinput sequence and its size

e agraph construction algorithms which consumes input tokens in sequence to
add layers to the graph of computation.

This principle generalizes to:

e arbitrarily structured data (e.g., sequences, trees, graphs)

e arbitrary graph of computation construction algorithm that traverses these
structures (e.g., including for-loops or recursive calls).

89/95

Neural message passing

/mi_F
megF

Algorithm 1 Message passing neural network
Require: N x D nodes x, adjacency matrix A
h <—Embed(x)
fort=1,..., T do
m <— Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Even though the graph topology is dynamic, the unrolled computation is fully
differentiable. The program is trainable.

Credits: Henrion et al, 2017.

https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

Graph neural network for object detection in point clouds

a: Graph Construction from a Point Cloud

¢: Bounding Box Merging and Scoring

Merge bounding
boxes

Vertex state —
initialization

Figure 2. The architecture of the proposed approach. It has three main components: (a) graph construction from a point cloud, (b) a graph

MLP

Point-GNN

Graph neural network with T iterations

MLP
MLP

Aggregate
MLP

MLP

neural network for object detection, and (¢) bounding box merging and scoring.

Credits: Shi and Rajkumar, Point-GNN, 2020.

Prediction
P M
Mo [asses

Classification

0
MLP, [Box

M-1
Box

Localization

91/95

https://arxiv.org/abs/2003.01251

Quantum chemistry with graph networks

a [+
- Malecules with = 20 aloms
L =22
Oy~ CH © Z=1z, % z, 1 g 30 feoll
3 - E
Dy Dy Dy, § 25 g1
OH =0 = Dy Dy Dy, 5,_' 2.0 é‘j —
b=1. HE : 2 45 "4 2,500 5,000
Of N N . Tz #add. cales. < 16 atoms
Dy Dy - Dy, g 1.0
§ 0.5
0.0
b = 10 15 20 25
atoms
dﬂ -1.702e5
T
£
o] w &
o »
3 5 20
= =
% g a0
$ 5
= F 40 4 T .

@) Gaussian expansion
@ Hyperbolic tangent
() Element.wisa product

@/@ Element-wisa sum

o [(e w)
)

Credits: Schutt et al, 2017. 92/95

https://www.nature.com/articles/ncomms13890

Learning to simulate physics with graph networks

(a) xto Xtr

Learned simulator, sy

do |1

(b) ENCODER PROCESSOR GN DECODER
N WO NP S

(c) Construct graph Pass messages (e) Extract dynamics info
V0
© ! 3 ©
(] 1
C ° € kl ::zem ;kl ::ze;?— ® C ®
00 x v '-‘:\’wl" o it vil T e Ty
© \l a ™ C
© © < ¥ [# Y=g C ©
[@ C ¢ (&

Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dg, and a fixed update procedure.

(b) The dp uses an “encode-process-decode” scheme, which computes dynamics information, Y, from input state, X. (¢) The ENCODER
constructs latent graph, G, from the input state, X. (d) The PROCESSOR performs M rounds of learned message-passing over the latent
graphs, G°, ..., G™ . (¢) The DECODER extracts dynamics information, Y, from the final latent graph, G

Credits: Sanchez-Gonzalez et al, 2020.

93/95

https://arxiv.org/abs/2002.09405

Credits: Sanchez-Gonzalez et al, 2020. 94/95

https://arxiv.org/abs/2002.09405

Thank you'!

