
Deep Learning
Lecture 7: Recurrent neural networks

Prof. Stéphane Gaïffas
https://stephanegaiffas.github.io

1 / 95

https://stephanegaiffas.github.io/

Today
How to use representation learning with sequential data ?

Embeddings

Temporal convolutions

Recurrent neural networks

Applications

Beyond sequences

2 / 95

Audio signals

Text

Examples of sequences

Time series
3 / 95

Real-world problems with a sequence structure

Sequence classi�cation:

sentiment analysis

activity/action recognition

DNA sequence classi�cation

action selection

Sequence synthesis:

text synthesis

music synthesis

motion synthesis

Sequence-to-sequence translation:

speech recognition

text translation

part-of-speech tagging

4 / 95

Prediction problems

One to one. Vanilla Neural Networks

One to many. Image Captioning: image/sequence of words

Many to one. Sentiment classi�cation: sequence of words/sentiment

Many to many. Translation: sequence of words/sequence of words

Many to many. Video classi�cation on frame level: sequence of image/sequence
of label

5 / 95

Limitations of (feed-forward) neural networks

They can't deal with sequential or "temporal" data

They lack memory

They have a �xed architecture: �xed input size and �xed output size

Recurrent neural networks are used to overcome successfully these limitations

6 / 95

Embeddings
Mostly for Natural Language Processing (NLP)

7 / 95

Natural Language Processing
Sentence/Document level Classi�cation (topic, sentiment)

Topic modeling (LDA, ...)

Translation

Chatbots / dialogue systems / assistants

Useful open source projects

gensim

spacy

huggingface

8 / 95

Word representation
Words are basically indexed (replaced by an integer) and/or represented as 1-
hot vectors: "dog" becomes 42

Possibly very large vocabulary of possible words

We can replace words by word-pieces using a tokenizer to end up with 20K
tokens

In nearly all deep learning tasks, words or tokens are replaced by embeddings
or embedding vectors

Each token is replaced by a vector where is the dimension of the

embeddings, usually between and

Embeddings are learned just as any other weight in the neural network

Parameter sharing: same embedding each time the same token is seen

Word / token embeddings are assets for most languages

V

e ∈ RE E

32 512

9 / 95

Embeddings for text classi�cation

hidden

First layer: embedding of size

Embeddings are averaged across the sequence of words: a single vector

 describes the whole sentence

 is fed to a dense layer that predicts the label, with softmax activation and

cross-entropy loss

E ∣V ∣ × E

h ∈ RE

h

―――

Joulin, Armand, et al. "Bag of tricks for ef�cient text classi�cation." FAIR 2016
10 / 95

Embeddings for text classi�cation

hidden

Input

 where is the simplex

x ∈ Nlength(x)

u = Embedding(x) ∈ RE×length(x)

v = mean(u) ∈ RE

y = softmax(Wv + b) ∈ Δ K Δ ⊂ RK
K

―――

Joulin, Armand, et al. "Bag of tricks for ef�cient text classi�cation." FAIR 2016
11 / 95

Embeddings for text classi�cation

hidden

Very ef�cient (speed and accuracy) on large datasets

State-of-the-art (or close to) on several classi�cation, when adding
bigrams/trigrams

Little gains from depth

―――

Joulin, Armand, et al. "Bag of tricks for ef�cient text classi�cation." FAIR 2016
12 / 95

Transfer learning for text
Can we use transfer learning with word embeddings ? Similar to images: can we
have word representations that are generic enough to transfer from one task
to another?

Unsupervised or self-supervised learning of word representations

Unlabelled text data is almost in�nite: Wikipedia dumps, Project Gutenberg,
Social Networks, etc.

Idea: use self-supervised training

Distributional Hypothesis (Harris, 1954): "words are characterized by the
company they keep"

Learn word embeddings by predicting word contexts. Given a word e.g. "dog"

and any other word , learn to predict the probability of that

 occurs in the context of "dog"

Unsupervised or self-supervised: no need for class labels. Self-supervision
comes from context. Tons of text required to cover rate words correctly

w ∈ V P[w∣dog]
w

13 / 95

Word2Vec: CBoW
CBoW: representing the context as a Continuous Bag-of-Word

Self-supervision from large unlabeled corpus of text: slide over an anchor word
and its context:

Similar to text classi�cation with classes

hidden

Problem: huge number of classes !

∣V ∣

―――

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." NIPS 2013
14 / 95

Word2Vec: CBoW
Problem: huge number of classes ! Softmax involves a sum over the whole
vocabulary at each gradient step : Computationally intractable

Trick: negative sampling

Sample negative words at random instead of computing the full softmax

Use say negative words sampled at random instead. Not accurate

enough to estimate accurately

But it's a good enough approximation to train useful word embedding
parameters

V

k = 5

P[x ∣x ,x ,x ,x]t t−2 t−1 t+1 t+2

―――

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." NIPS 2013
http://sebastianruder.com/word-embeddings-softmax/index.html

15 / 95

http://sebastianruder.com/word-embeddings-softmax/index.html

Word2Vec: Skip Gram

hidden

Given the central word, predict occurence of other words in its context.

Widely used in practice

Again Negative Sampling is used as a cheaper alternative to full softmax

Evaluation and Related methods

Always dif�cult to evaluate unsupervised tasks

Other popular method: GloVe (Socher et al.)

http://nlp.stanford.edu/projects/glove/

16 / 95

http://nlp.stanford.edu/projects/glove/

Word2Vec

―――

Colobert et al. 2011, Mikolov, et al. 2013
17 / 95

Word2Vec

Compositionality

―――

Colobert et al. 2011, Mikolov, et al. 2013
18 / 95

Word analogies

19 / 95

Take away on embeddings
For text applications, inputs of neural networks are embeddings

Little training data and large vocabulary not well covered by training data: use
transfer learning with pre-trained embeddings

Large training data with labels: learn directly task-speci�c embedding in
supervised mode

These methods use Bag-of-Words (BoW): they ignore the order in word
sequences

Depth and non-linear activations on hidden layers are not that useful for BoW
text classi�cation

20 / 95

Language models

21 / 95

Language models
Assign a probability to a sequence of words

Such that plausible sequences have higher probabilities:

Order is important bag-of-Words representations from above

P["I like cats"] > P["I table cats"]

P["I like cats"] > P["like I cats"]

≠

22 / 95

Language models
Assign a probability to a sequence of words

Such that plausible sequences have higher probabilities:

Order is important bag-of-Words representations from above

Auto-regressive sequence modeling

 is parametrized by a neural network

P["I like cats"] > P["I table cats"]

P["I like cats"] > P["like I cats"]

≠

P [w]θ 0

P θ

23 / 95

Language models
Assign a probability to a sequence of words

Such that plausible sequences have higher probabilities:

Order is important bag-of-Words representations from above

Auto-regressive sequence modeling

 is parametrized by a neural network

P["I like cats"] > P["I table cats"]

P["I like cats"] > P["like I cats"]

≠

P [w] × P [w ∣w]θ 0 θ 1 0

P θ

24 / 95

Language models
Assign a probability to a sequence of words

Such that plausible sequences have higher probabilities:

Order is important bag-of-Words representations from above

Auto-regressive sequence modeling

 is parametrized by a neural network

P["I like cats"] > P["I table cats"]

P["I like cats"] > P["like I cats"]

≠

P [w] × P [w ∣w] × ⋯ × P [w ∣w ,w , … ,w]θ 0 θ 1 0 θ n n−1 n−2 0

P θ

25 / 95

Language models
Assign a probability to a sequence of words

Such that plausible sequences have higher probabilities:

Order is important bag-of-Words representations from above

Auto-regressive sequence modeling

 is parametrized by a neural network

Hope: internal representation of the model can better capture the meaning of a
sequence than a Bag-of-Words

P["I like cats"] > P["I table cats"]

P["I like cats"] > P["like I cats"]

≠

P [w] × P [w ∣w] × ⋯ × P [w ∣w ,w , … ,w]θ 0 θ 1 0 θ n n−1 n−2 0

P θ

26 / 95

Conditional Language Models
NLP problems expressed as conditional language models

Example 1. Translation problem

Consider

Example: : "J'aime les chats" and : "I love cats"

Model the output word by word

P[target∣source]

source target

P [w ∣source] × P [w ∣w , source] × ⋯θ 0 θ 1 0

27 / 95

Conditional Language Models
NLP problems expressed as conditional language models

Example 2. Question Answering / Dialogue / Chatbot

Consider

: "John puts two glasses on the table."; "Bob adds two more glasses.";

"Bob leaves the kitchen to play baseball in the garden."

: "How many glasses are there?"

: "There are four glasses."

Example 3. Image captioning

Consider

 a �at representation of the image in output by a CNN

P[answer∣question, context]

context

question

answer

P[caption∣image]

image = Rh

28 / 95

A simple language model
If we use the same idea as before

hidden

Fixed context size

Average embeddings (same as CBoW): no sequence information

Concatenate embeddings: introduces many parameters

1D convolution: larger contexts, limit number of parameters

Does not take well into account varying sequence sizes and sequence
dependencies

29 / 95

Temporal convolutions

30 / 95

Temporal convolutions
The simplest approach to sequence processing is to use temporal convolutional
networks (TCNs).

TCNs correspond to standard 1D convolutional networks. They process input
sequences as �xed-size vectors of the maximum possible length.

―――

A Oord et al. Wavenet: A generative model for raw audio (2016)
31 / 95

Temporal convolutions

Increasing exponentially the kernel sizes makes the required number of layers grow
as of the time window taken into account.

Dilated convolutions make the model size grow as , while the memory

footprint and computation are .

O(log T) T

O(log T)
O(T log T)

―――
Credits: Philippe Remy, keras-tcn, 2018; Francois Fleuret, EE559 Deep Learning, EPFL. 32 / 95

https://github.com/philipperemy/keras-tcn
https://fleuret.org/ee559/

Temporal convolutions

―――
Credits: Bai et al, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, 2018. 33 / 95

https://arxiv.org/abs/1803.01271

Recurrent Neural Network

34 / 95

Recurrent Neural Network

input

hidden

output

35 / 95

Recurrent Neural Network

input

hidden

output

Unroll over a sequence :

hidden

(x ,x ,x)0 1 2

36 / 95

Recurrent Neural Network

input

hidden

output

Unroll over a sequence :

hiddenhidden

(x ,x ,x)0 1 2

37 / 95

Recurrent Neural Network

input

hidden

output

Unroll over a sequence :

hiddenhidden hidden

(x ,x ,x)0 1 2

38 / 95

Language Modelling

input: sequence of embeddings words

output: shifted sequence of embedings

(w ,w , ...,w) =0 1 t

(w ,w , ...,w) =1 2 t+1

39 / 95

Language Modelling

 (often)

 (here)

How many parameters ?

x = Embedding(w) ∈ Rt t
E

h = g(W h + W x + b) ∈ Rt
h

t−1
x

t
h H g = tanh

y = softmax(W h + b) ∈ Δ

o
t

o
K K = ∣V ∣

40 / 95

Language Modelling

 (often)

 (here)

How many parameters ?

x = Embedding(w) ∈ Rt t
E

h = g(W h + W x + b) ∈ Rt
h

t−1
x

t
h H g = tanh

y = softmax(W h + b) ∈ Δ

o
t

o
K K = ∣V ∣

E × ∣V ∣ + H × H + H × E + H + K × H + K
41 / 95

Backpropagation through time
Similar as standard backpropagation on unrolled network

hidden

42 / 95

Backpropagation through time
Similar as standard backpropagation on unrolled network

hiddenhidden

43 / 95

Backpropagation through time
Similar as standard backpropagation on unrolled network

hiddenhidden hidden

44 / 95

Backpropagation through time
Similar as standard backpropagation on unrolled network

hiddenhidden hidden

Similar as training very deep networks with tied parameters

Example between and : is used twice

Usually truncate the backprop after timesteps

Dif�culties to train long-term dependencies

x 0 y 2 W h

T

45 / 95

Other uses: opinion analysis

Output is opinion (1 for positive, 0 for negative)

Very dependent on words order

Very �exible network architectures

46 / 95

Other uses: opinion analysis

Output is opinion (1 for positive, 0 for negative)

Very dependent on words order

Very �exible network architectures

47 / 95

Stacked RNNs
Recurrent networks can be viewed as layers producing sequences of

activations.

As for dense layers, recurrent layers can be composed in series to form a stack of
recurrent networks.

h 1:T
l

48 / 95

Bidirectional RNNs
Computing the recurrent states forward in time does not make use of future input

values , even though there are known

RNNs can be made bidirectional by consuming the sequence in both directions.

Effectively, this amounts to run the same (single direction) RNN twice:

once over the original sequence

once over the reversed sequence

The resulting recurrent states of the bidirectional RNN is the concatenation of two
resulting sequences of recurrent states

x t+1:T

x 1:T

x T :1

49 / 95

Long-term dependencies

Nice idea: allows information along a sequence to persist

Gradient computed through backpropagation through time: backpropagation
applied to the RNN unrolled along the sequence

If the sequence is long: many multiplication with the same matrices!

Leads to the so-called vanishing or exploding gradient problem

50 / 95

Long-term dependencies

Small number of matrix products

Gradients do not vanish or explode

The network can learn short-term dependencies

51 / 95

Long-term dependencies

Longer dependencies require many matrix products: vanishing or exploding
gradients makes it hard with a simple RNN

Introduces a strong bias: the network learns only short-term dependencies

Tricks: gradient clipping, non-saturating activations, ...

but mainly more complicated layers using architectures based on gates

The most popular one is the LSTM

52 / 95

Gating
RNN cells can include a pass-through, or additive paths, so that the recurrent state
does not go repeatedly through a squashing non-linearity. This is identical to skip
connections in ResNet.

For instance, the recurrent state update can be a per-component weighted average

of its previous value and a full update , with the weighting depending on

the input and the recurrent state, hence acting as a forget gate.

h t−1 h̄t z t

 h̄t

z t

h t

= ϕ(x ,h ; θ)t t−1

= f(x ,h ; θ)t t−1

= z ⊙ h + (1 − z) ⊙ .t t−1 t h̄t

53 / 95

Gating

54 / 95

Long Short Term Memory (LSTM)

55 / 95

Standard RNN

In a standard RNN, the recurrent layer contains a simple computation node

h = tanh(W h + W x + b) ∈ Rt
h

t−1
x

t
h H

56 / 95

Long Short Term Memory (LSTM)
LSTM contains interacting layers that control information �ow via gates

LSTM layers are able to track or memorize information throughout many time steps

―――

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 1997
57 / 95

Long Short Term Memory (LSTM)
A LSTM layer uses a cell state where it's easy for information to �ow

Information is added or removed to cell state through structures called gates

Gates optionally let information through, via a sigmoid activation
and pointwise product

c t

58 / 95

Long Short Term Memory (LSTM)
How do LSTM work ?

59 / 95

Long Short Term Memory (LSTM)
LSTM learns to forget irrelevant parts of the previous state

LSTM learns to selectively update cell state valuesc t

60 / 95

Long Short Term Memory (LSTM)
LSTM learns an output gate that outputs certain parts of the cell state

A LSTM learns to forget, update and output

61 / 95

LSTM
Forget irrelevant information

Uses previous hidden state and input

Learns to completely forget or keep previous cell state through a layer

with sigmoid activation

h t−1 x t

c t−1

σ ∈ [0, 1]

62 / 95

LSTM
Identify new information to be stored

Uses previous hidden state and input

 layer: decide what values to update

 layer: generate new vector of candidate values that could be added to

the state

h t−1 x t

σ

tanh

63 / 95

LSTM
Update cell state

Apply forget operation to the previous cell state using

Add new candidate values, scaled by how much we decided to update :

Combine the two to produce new cell state

C t−1 f ∗ C t t−1

i ∗t C
~
t

C t

64 / 95

LSTM
output hidden state

Construct hidden state (output of the recurrent layer) as a �ltered version of the

cell state

 layer: decide what parts of state to output

 layer : squash values of cell state in

: output �ltered version of cell state

h t

c t

σ c t

tanh [−1, 1]

o ∗ tanh(C)t t

65 / 95

LSTM gradient �ow

Backpropagation from to requires only element-wise multiplication !

No matrix multiplication: avoids the vanishing gradient problem

Leads to an uninterrupted gradient �ow!

C t C t−1

66 / 95

LSTM key ingredients

1. Maintain a separate cell state in addition to a hidden state

2. Use gates to control the �ow of information

Forget gate to learn to keep information from previous cell state

Input gate to learn to store new information in the new cell state

Output gate to learn to return the hidden state

3. Backpropagation from to does not require matrix multiplication: no

vanishing gradient problem

c t h t

C t−1

C t

C t C t−1

67 / 95

Around LSTM: tied forget and input
gates

Coupled or tied forget and input gates

Decide what should be kept and forgotten at the same time

68 / 95

Around LSTM: GRU

A very popular alternative to the LSTM

Combines forget and input gates into a single update gate

Also, it merges the cell and hidden states

Simpler than LSTM and often performs the same

Many other variants!

But main recurrent layers in PyTorch are rnn, lstm and gru layers

69 / 95

Exploding gradients

70 / 95

Exploding gradients
Gated units prevent gradients from vanishing, but not from exploding.

―――
Credits: pat-coady. 71 / 95

https://pat-coady.github.io/rnn/

Gradient clipping

The standard strategy to solve this issue is gradient norm clipping, which rescales
the norm of the gradient to a �xed threshold when it is above:δ

f = min(∣∣∇f ∣∣, δ).∇
~

∣∣∇f ∣∣
∇f

72 / 95

Orthogonal initialization
Let us consider a simpli�ed RNN, with no inputs, no bias, an identity activation

function (as in the positive part of a ReLU) and the initial recurrent state set to

the identity matrix.

We have,

For a sequence of size , it comes

Ideally, we would like to neither vanish nor explode as increases.

σ h 0

h t = σ W x +W h + b xh
T

t hh
T

t−1 h

= W h hh
T

t−1

= W h .T
t−1

n

h = W(W(W(...(Wh)...))) = W h = W I = W .n 0
n

0
n n

Wn n

73 / 95

Orthogonal initialization
Theorem

Let be the spectral radius of the matrix , de�ned as

We have:

if then (= vanishing activations),

if then (= exploding activations).

ρ(A) A

ρ(A) = max{∣λ ∣, ..., ∣λ ∣}.1 d

ρ(A) < 1 lim ∣∣A ∣∣ = 0n→∞
n

ρ(A) > 1 lim ∣∣A ∣∣ = ∞n→∞
n

74 / 95

Orthogonal initialization
If is orthogonal, then it is diagonalizable and all its eigenvalues are equal to

or . In this case, the norm of remains bounded.

Therefore, initializing as a random orthogonal matrix will guarantee that

activations will neither vanish nor explode.

In practice, a random orthogonal matrix can be found through the SVD
decomposition or the QR factorization of a random matrix.

This initialization strategy is known as orthogonal initialization.

Exploding activations are also the reason why squashing non-linearity functions
(such as) are preferred in RNNs.

They avoid recurrent states from exploding by upper bounding .

(At least when running the network forward.)

A −1
1 A = SΛ Sn n −1

W

tanh

∣∣h ∣∣t

75 / 95

Applications
(Only some)

76 / 95

Sentiment analysis

Document-level modeling for sentiment analysis (= text classi�cation),
with stacked, bidirectional and gated recurrent networks.

―――
Credits: Duyu Tang et al, Document Modeling with Gated Recurrent Neural Network for Sentiment Classi�cation, 2015. 77 / 95

http://www.aclweb.org/anthology/D15-1167

Language models
Model language as a Markov chain, such that sentences are sequences of words

 drawn repeatedly from

This is an instance of sequence synthesis, for which predictions are computed at all
time steps .

w 1:T

p(w ∣w).t 1:t−1

t

―――
Credits: Alex Graves, Generating Sequences With Recurrent Neural Networks, 2013. 78 / 95

https://arxiv.org/abs/1308.0850

Sequence synthesis
The same generative architecture applies to any kind of sequences.

E.g., sketch-rnn-demo for sketches de�ned as sequences of strokes.

79 / 95

https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

Neural machine translation

―――
Credits: Yonghui Wu et al, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016. 80 / 95

https://arxiv.org/abs/1609.08144

Neural machine translation

―――
Credits: Yonghui Wu et al, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016. 81 / 95

https://arxiv.org/abs/1609.08144

Text-to-speech synthesis

―――
Image credits: Shen et al, 2017. arXiv:1712.05884. 82 / 95

https://arxiv.org/abs/1712.05884

Learning to control

A recurrent network playing Mario Kart

MariFlow - Self-Driving Mario Kart w/Recurrent Neural NetworkMariFlow - Self-Driving Mario Kart w/Recurrent Neural Network

83 / 95

https://www.youtube.com/watch?v=Ipi40cb_RsI

Beyond sequences

84 / 95

Yann LeCun (Director of AI Research, Facebook, 2018)

An increasingly large number of people are de�ning the networks procedurally in
a data-dependent way (with loops and conditionals), allowing them to change
dynamically as a function of the input data fed to them. It's really very much like a
regular program, except it's parameterized.

85 / 95

Neural computers

Any Turing machine can be simulated by a recurrent neural network
(Siegelmann and Sontag, 1995)

86 / 95

Networks can be coupled with memory storage to produce neural computers:

The controller processes the input sequence and interacts with the memory to
generate the output.

The read and write operations attend to all the memory addresses.

87 / 95

A differentiable neural computer being trained to store and recall dense binary
numbers. Upper left: the input (red) and target (blue), as 5-bit words and a 1 bit
interrupt signal. Upper right: the model's output

88 / 95

Programs as neural nets
The topology of a recurrent network unrolled through time is dynamic.

It depends on:

the input sequence and its size

a graph construction algorithms which consumes input tokens in sequence to
add layers to the graph of computation.

This principle generalizes to:

arbitrarily structured data (e.g., sequences, trees, graphs)

arbitrary graph of computation construction algorithm that traverses these
structures (e.g., including for-loops or recursive calls).

89 / 95

Neural message passing

Even though the graph topology is dynamic, the unrolled computation is fully
differentiable. The program is trainable.

―――
Credits: Henrion et al, 2017. 90 / 95

https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

Graph neural network for object detection in point clouds

―――
Credits: Shi and Rajkumar, Point-GNN, 2020. 91 / 95

https://arxiv.org/abs/2003.01251

Quantum chemistry with graph networks

―――
Credits: Schutt et al, 2017. 92 / 95

https://www.nature.com/articles/ncomms13890

Learning to simulate physics with graph networks

―――
Credits: Sanchez-Gonzalez et al, 2020. 93 / 95

https://arxiv.org/abs/2002.09405

―――
Credits: Sanchez-Gonzalez et al, 2020. 94 / 95

https://arxiv.org/abs/2002.09405

Thank you !

95 / 95

