Deep Learning

Lecture 8: Attention models, transformers and self-supervised learning

Prof. Stéphane Gaiffas
https://stephanegaiffas.github.io

J ‘Q université

LABORATOIRE DE PROBABILITES o =
STATISTIQUE & MODELISATION ; D I D E Ro I

Université de Paris

https://stephanegaiffas.github.io/

Some advanced topics

Today, we'll describe some very recent deep learning architectures and techniques.
Mostly useful for computer vision and NLP

Transformers - Attention models
Architectures involving attention mechanisms

e Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention (https://arxiv.org/abs/2006.16236)

e Rethinking Attention with Performers (https://arxiv.org/abs/2009.14794)
Self-supervised learning
Self-supervised learning based on contrastive learning

e A Simple Framework for Contrastive Learning of Visual Representations
(https://arxiv.org/abs/2002.05709)

e Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning
(https://arxiv.org/abs/2006.07733)

2/32

https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.07733

Purely attention-based
architectures

From RNNs to transformers

e RNNs used to be the state-of-the art for machine translation, time series
analysis, and more generally any sequence-to-sequence task

e Then, attention was used inside recurrent layers to improve their long-range
dependency

e But RNNs are hard to scale: their recurrent nature hinders distributed
computations

A game changer camein 2017:

e Attentionis all you need by Vaswani et al. (2017) introduces the transformer
architecture (https://arxiv.org/abs/1706.03762)

e Many follow-ups since then...

e Coreingredient is the Multi-Head Self-Attention layer
Led to things like

e BERT, Transformer-XL, GPT-3 (175 Billions of parameters !)

4/32

https://arxiv.org/abs/1706.03762

GPT-2 and GPT-3 examples

Al generated faces P e
x GPT-3
s Models

Enter text

https://app.inferkit.com/demo

https://app.inferkit.com/demo

Self-attention layer

e For the first layer, input is a sequence of token embeddings
X =[z1,...,2L]
where z; € R¢
e Output is a same-length sequence of (hopefully) contextualized embeddings

e For other layers, input is a sequence of contextualized embedding vectors
(output of a previous self-attention layer)

6/32

Self-attention layer

It first computes key, queries and values:
Q=XW¢ K=XWf V=XW'
where
WC e R4 WE c R4 gnd WY e R

are learned parameters and X € R¢ is the input

- - H6
CEcp =

Credits: http:/jalammar.github.io/illustrated-transformer 7/32

http://jalammar.github.io/illustrated-transformer

Self-attention layer

And computes inner products between keys and queries and applies softmax over

rows
KT

Z = softmax (Q) Vv
Vg

softmax()

The self-attention calculation in matrix form

Credits: http:/jalammar.github.io/illustrated-transformer 8/32

http://jalammar.github.io/illustrated-transformer

Multi-head self-attention layer

Combines H heads of self-attention

Qn = XWY,

Z; = softmax

K, = XWr,

Vi, =XW)/

Q. K,

Vi,
Vdy

MSA(X) = [Z; --- Zy] WO

Scaled Dot-Product Attention

MatMul

Mask (opt.)

Figure 2: (left) Scaled Dot-Product Attention.
attention layers running in parallel.

Multi-Head Attention

Scaled Dot-Product
Attention

Ll L L

Linear

Linear Linear

(right) Multi-Head Attention consists of several

Multi-head self-attention layer

Visualization of the softmax matrix

@ ©

3 T 3

= o

[+ (1]
w = E c o w 4]
2 & T g 8 2EZ5 9o e bt g g%
= o e8] F @ D G £ o =z 2 =

o
= w0m

= Ec a]
o ® o B 2 =523 o % o2
= = 8 & F m D o £ = 8 =

The animal didn't cross the street because ft was too tired.
L'animal n'a pas traversé la rue parce qu'l était trop fatigué.

The animal didn't cross the street because [t was too wide.
L'animal n'a pas traversé la rue parce qu'Bllg était trop large.

Solves, among many others things coreference resolution (a difficult problem in
machine translation)

Credits: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 10/32

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer architecture

The encoder stacks several MSA layers as follows:
Y, = LayerNorm(Xj, + MSA (X))
X1 = LayerNorm(Y + FF(Yy))
where

e FF isasmall feed-forward network
e X; = e = the sequence of L token embeddings
e X, € REX4 jsthe input of the k-th layer

o X;11 € RE%% isthe output of the k-th layer

11/32

Transformer architecture

Layer normalization versus batch normalization

Batch Normalization

Same for all
batch training examples
(—*—\ mean std
[1][3][s] [3] [3]
[2][2][2] [2] [o]
ol[1][s] 3] [3]
(alle][1]| [a] [3]
s{l2][3] . [3] [2]
1 l[o][2| [1] [1]

https://arxiv.org/abs/1607.06450

Layer Normalization

batch

1
| }
T

Hlmlhlclmln—nl

(o[m[o]~][~]w]

v

E‘jplwlplmlmlm|

mean E Same for all

std EEHEI feature dimensions

12/32

https://arxiv.org/abs/1607.06450

Transformer architecture

Usually uses an encoder / decoder architecture

Output
Probabilities

Feed
Forward
((Add & Norm |1—-,
(- Add & Norm) Mult-Head
Feed Attention
Forward J) Nx
—]
Nx Add & Morm
,—»| Add & Norm | Macked
Multi-Head Multi-Head
Attention Attention
At At
L\— 7 . _‘J
Positional Paositional
Encodin D @ i
9 Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Transformer architecture

Usually uses an encoder / decoder architecture

From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 14/32

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Positional embeddings

Original implementation uses 512 cosines and sines

Example with only 2 cosines and sines:

POSITIONAL 1 1 084 LN 1
ENCODING
+ +
EMBEDDINGS xi [[[[| x2 [
INPUT Je Suis

As such, token embeddings do not change with their position in the sequence
A strategy is positional embeddings: either deterministic or trained

Just add each positional embedding to each token embedding before pushing
the tensor in the architecture

091 0.0002 1

étudiant

15/32

Quadratic complexity of MSA

e The MSA layer has memory and computational complexity O(L2d)

¢ Huge demand of computational power and saturates GPU memory for long
sequences (L large)

e Some follow-up works propose strategies to solve this

~

local attention graph attention

/

)

6:‘) "C‘.ij
RN

local context

~N oM Ak WN=aO

-

TN WA T

attention heat map

Quadratic complexity of MSA

e The MSA layer has memory and computational complexity O(L2d)

¢ Huge demand of computational power and saturates GPU memory for long
sequences (L large)

e Some follow-up works propose strategies to solve this
Graph Neural Networks and Graph Attention Networks

e Graph Attention Networks (https://arxiv.org/abs/1710.10903)

e Graph Neural Networks: A Review of Methods and Applications
(https://arxiv.org/abs/1812.08434)

17/32

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1812.08434

Quadratic complexity of MSA

e The MSA layer has memory and computational complexity O(L2d)

¢ Huge demand of computational power and saturates GPU memory for long
sequences (L large)

e Some follow-up works propose strategies to solve this
Graph Neural Networks and Graph Attention Networks

e Graph Attention Networks (https://arxiv.org/abs/1710.10903)

e Graph Neural Networks: A Review of Methods and Applications
(https://arxiv.org/abs/1812.08434)

Linear transformers

e Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention (https://arxiv.org/abs/2006.16236)

¢ Rethinking Attention with Performers (https://arxiv.org/abs/2009.14794)

18/32

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2009.14794

Quadratic complexity of MSA

Bottleneck is the computation of the softmax attention

-
Z = softmax (QK) VvV
Vd

that we can rewrite more generally as
L .
ij1 sim(Q;, K;)V
L .
Zj:l sim(Q;, K;)

Z; =

fort =1,..., Lwhere

sim(q, k) = exp (%)

19/32

Linear transformers

https://arxiv.org/abs/2006.16236 uses a kernel trick: replace Sim(q, k:) by
sim(g, k) = ¢(q) ' ¢(k)
for a feature mapping ¢. And consider in practice just a simple activation function
d(z) =elu(z) +1
whereelu(z) = zifz > O0andelu(z) = a(e* — 1)ifz < 0
This solves the memory and computational bottlenecks because of

5 L Q) $ENY; #(Q) X oK)V

Z'_ pu—

Y d@Q)THE) d(Qi)T Y $(K;)

No need to compute explicitly the attention matrix anymore !

20/32

https://arxiv.org/abs/2006.16236

Linear transformers

https://arxiv.org/abs/2009.14794 uses the same kernel trick

But uses random projections

The trick relies on the following simple remark:
T 10,12 102
sim(q, k) = e?'* — 3’ i (g, k)e I
2
where K (¢, k) = e~ 2147%I" is the Gaussian kernel so that

sim(q, k) = o~ 3 (lal®+II&*) o n0L) [ewT(q+k)]

M
(T 3 evnlath
M

1=1

withwy, ..., wyr iid N (0,1)

21/32

https://arxiv.org/abs/2009.14794

Linear transformers

- o o = e e o P e e e e e e e e e T T T T

Credits: https://arxiv.org/abs/2009.14794

https://arxiv.org/abs/2009.14794

Linear transformers

I

Credits: https://arxiv.org/abs/2009.14794

https://arxiv.org/abs/2009.14794

Self-supervised learning

Self-supervised learning

Self-supervised learning uses pretext tasks hence the name self-supervised. For
NLP astrategy called Masked Language Modeling does the following:

e Selects 15% of the tokens at random in a sequence

e among them, replace 80% by the MASK token, 10% by a random code and leave
the remaining 10% unchanged

e Predict the token hidden behind the MASK token
This self-supervised strategy is one of the core ingredient of BERT

e BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding (https://arxiv.org/abs/1810.04805)

Other strategies involve sequence order prediction, among others

25/32

https://arxiv.org/abs/1810.04805

Self-supervised learning

Recent very impressive results in computer vision

~ 0
S o

[*)
(=)

I
=)

ImageNet Top-1 Accuracy (%)
W W
(=} (=)

N

\
.\l)
\

\
N
N

™

Supervised
= BYOL
SimCLR (repro)

™

N
(=)

|

2 5 10 20 50 100
Percentage of training data

(a) Top-1 accuracy

Let's explain this variant :

\O
(=)

o)
(=)

[o)
S

ImageNet Top-5 Accuracy (%)
Ul =
S o

.;;
o

@

Supervised
- BYOL
Qo SimCLR (repro)
1 2] 10 20 50 100

Percentage of training data

(b) Top-5 accuracy

e A Simple Framework for Contrastive Learning of Visual Representations
(https://arxiv.org/abs/2002.05709)

From https://arxiv.org/abs/2006.07733

26/32

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.07733

Self-supervised learning

The main ingredients for self-supervised learning (SimCLR version)

e Astochastic data augmentation module. Transforms each input x; into
randomly data-augmented versions Z; and & ;. The pair (Z4, zij) is called a

positive pair.

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(b) Crop and resize

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

From https://arxiv.org/abs/2002.05709

27/32

https://arxiv.org/abs/2002.05709

Self-supervised learning

The main ingredients for self-supervised learning (SimCLR version)

e Anencoder f(+) (for instance a ResNet50) that we want to train. We compute

withith; = f(Z;)and h; = f(Z;)

e A projection head g() given by a simple feed-forward network, such as a 1-
hidden layer network

zi = g(hi) = W ReLUWWY R,))

e Create data-augmentations pairs Zy;—1 . oy of the size N mini-batch. On a
positive pair (%, j) we compute the contrastive loss

o eSim(Zi,Zj)/T
f(z,]) — _log ON

ol 1k7§i65im(zi’zk)/7-

where sim(u, v) = u' v/||ul|||v|| is the cosine similarity

28/32

Self-supervised learning

The main ingredients for self-supervised learning (SimCLR version)

e Theloss on the data-augmented mini-batch jkk:l,. _.2N Is given by

N
1
o 2= (£(2k — 1,2k) + £(2k, 2k — 1))

Maximize agreement

[\
N
A
 J
[\
L

9
—
h
—
e
=
—_
~—

hi +— Representation —» h;

From: https://arxiv.org/abs/2002.05709 29/32

https://arxiv.org/abs/2002.05709

Self-supervised learning

The main ingredients for self-supervised learning (SimCLR version)

Credits: https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html 30/32

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html

Self-supervised learning

e This version of self-supervised learning requires the use of large mini-batches
e Sothat enough negatives are used in the contrastive loss

e Strong computational and memory footprint
A convincing alternative approachiis:

e Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning
(https://arxiv.org/abs/2006.07733)

31/32

https://arxiv.org/abs/2006.07733

Thank You'!

