
Deep Learning
Lecture 8: Attention models, transformers and self-supervised learning

Prof. Stéphane Gaïffas
https://stephanegaiffas.github.io

1 / 32

https://stephanegaiffas.github.io/

Some advanced topics
Today, we'll describe some very recent deep learning architectures and techniques.
Mostly useful for computer vision and NLP

Transformers - Attention models

Architectures involving attention mechanisms

Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention (https://arxiv.org/abs/2006.16236)

Rethinking Attention with Performers (https://arxiv.org/abs/2009.14794)

Self-supervised learning

Self-supervised learning based on contrastive learning

A Simple Framework for Contrastive Learning of Visual Representations
(https://arxiv.org/abs/2002.05709)

Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning
(https://arxiv.org/abs/2006.07733)

2 / 32

https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.07733

Purely attention-based
architectures

3 / 32

From RNNs to transformers
RNNs used to be the state-of-the art for machine translation, time series
analysis, and more generally any sequence-to-sequence task

Then, attention was used inside recurrent layers to improve their long-range
dependency

But RNNs are hard to scale: their recurrent nature hinders distributed
computations

A game changer came in 2017:

Attention is all you need by Vaswani et al. (2017) introduces the transformer
architecture (https://arxiv.org/abs/1706.03762)

Many follow-ups since then...

Core ingredient is the Multi-Head Self-Attention layer

Led to things like

BERT, Transformer-XL, GPT-3 (175 Billions of parameters !)

4 / 32

https://arxiv.org/abs/1706.03762

https://app.inferkit.com/demo

GPT-2 and GPT-3 examples

5 / 32

https://app.inferkit.com/demo

Self-attention layer
For the �rst layer, input is a sequence of token embeddings

where

Output is a same-length sequence of (hopefully) contextualized embeddings

For other layers, input is a sequence of contextualized embedding vectors
(output of a previous self-attention layer)

X = [x , … ,x]1 L

x ∈ Ri
d

6 / 32

Self-attention layer
It �rst computes key, queries and values:

where

are learned parameters and is the input

Q = XW , K = XW , V = XWQ K V

W ∈ R , W ∈ R and W ∈ RQ d×d k K d×d k V d×d v

X ∈ Rd

―――
Credits: http://jalammar.github.io/illustrated-transformer 7 / 32

http://jalammar.github.io/illustrated-transformer

Self-attention layer
And computes inner products between keys and queries and applies softmax over
rows

Z = softmax V(
 d k

QK⊤)

―――
Credits: http://jalammar.github.io/illustrated-transformer 8 / 32

http://jalammar.github.io/illustrated-transformer

Multi-head self-attention layer
Combines heads of self-attentionH

Q = XW , K = XW , V = XW h h
Q

h h
K

h h
V

Z = softmax V h (
 d k

Q K h h
⊤) h

MSA(X) = [Z ⋯ Z] W1 H
O

9 / 32

Multi-head self-attention layer
Visualization of the softmax matrix

Solves, among many others things coreference resolution (a dif�cult problem in
machine translation)

―――
Credits: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 10 / 32

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer architecture
The encoder stacks several MSA layers as follows:

where

 is a small feed-forward network

 the sequence of token embeddings

 is the input of the -th layer

 is the output of the -th layer

Y = LayerNorm(X + MSA(X))k k k

X = LayerNorm(Y + FF(Y))k+1 k k

FF

X = e =1 L

X ∈ Rk
L×d k k

X ∈ Rk+1
L×d k k

11 / 32

Transformer architecture
Layer normalization versus batch normalization

―――
https://arxiv.org/abs/1607.06450 12 / 32

https://arxiv.org/abs/1607.06450

Transformer architecture
Usually uses an encoder / decoder architecture

13 / 32

Transformer architecture
Usually uses an encoder / decoder architecture

―――
From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 14 / 32

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Positional embeddings
As such, token embeddings do not change with their position in the sequence

A strategy is positional embeddings: either deterministic or trained

Just add each positional embedding to each token embedding before pushing
the tensor in the architecture

Original implementation uses 512 cosines and sines

Example with only 2 cosines and sines:

15 / 32

Quadratic complexity of MSA
The MSA layer has memory and computational complexity

Huge demand of computational power and saturates GPU memory for long
sequences (large)

Some follow-up works propose strategies to solve this

O(L d)2

L

16 / 32

Quadratic complexity of MSA
The MSA layer has memory and computational complexity

Huge demand of computational power and saturates GPU memory for long
sequences (large)

Some follow-up works propose strategies to solve this

Graph Neural Networks and Graph Attention Networks

Graph Attention Networks (https://arxiv.org/abs/1710.10903)

Graph Neural Networks: A Review of Methods and Applications
(https://arxiv.org/abs/1812.08434)

O(L d)2

L

17 / 32

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1812.08434

Quadratic complexity of MSA
The MSA layer has memory and computational complexity

Huge demand of computational power and saturates GPU memory for long
sequences (large)

Some follow-up works propose strategies to solve this

Graph Neural Networks and Graph Attention Networks

Graph Attention Networks (https://arxiv.org/abs/1710.10903)

Graph Neural Networks: A Review of Methods and Applications
(https://arxiv.org/abs/1812.08434)

Linear transformers

Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention (https://arxiv.org/abs/2006.16236)

Rethinking Attention with Performers (https://arxiv.org/abs/2009.14794)

O(L d)2

L

18 / 32

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2009.14794

Quadratic complexity of MSA
Bottleneck is the computation of the softmax attention

that we can rewrite more generally as

for where

Z = softmax V(
 d

QK⊤)

Z = i
 sim(Q ,K)∑j=1

L
i j

 sim(Q ,K)V ∑j=1
L

i j j

i = 1, … ,L

sim(q, k) = exp (
 d

q k⊤)

19 / 32

Linear transformers
https://arxiv.org/abs/2006.16236 uses a kernel trick: replace by

for a feature mapping . And consider in practice just a simple activation function

where if and if

This solves the memory and computational bottlenecks because of

No need to compute explicitly the attention matrix anymore !

sim(q, k)

sim(q, k) = ϕ(q) ϕ(k)⊤

ϕ

ϕ(z) = elu(z) + 1

elu(z) = z z > 0 elu(z) = α(e − 1)z z < 0

Z = = i
 ϕ(Q) ϕ(K)∑j=1

L
i

⊤
j

 ϕ(Q) ϕ(K)V ∑j=1
L

i
⊤

j j

ϕ(Q) ϕ(K)i
⊤ ∑j=1

L
j

ϕ(Q) ϕ(K)V i
⊤ ∑j=1

L
j j

20 / 32

https://arxiv.org/abs/2006.16236

Linear transformers
https://arxiv.org/abs/2009.14794 uses the same kernel trick

But uses random projections

The trick relies on the following simple remark:

where is the Gaussian kernel so that

with i.i.d

sim(q, k) = e = e K(q, k)eq k⊤
 ∥q∥2

1 2
 ∥k∥2

1 2

K(q, k) = e− ∥q−k∥2
1 2

sim(q, k) = e E e− (∥q∥ +∥k∥)2
1 2 2

ω∼N (0,I)d [ω (q+k)⊤]

≈ e e− (∥q∥ +∥k∥)2
1 2 2

M

1

i=1

∑
M

ω (q+k)m
⊤

ω , … ,ω 1 M N (0, I)d

21 / 32

https://arxiv.org/abs/2009.14794

Linear transformers

―――
Credits: https://arxiv.org/abs/2009.14794 22 / 32

https://arxiv.org/abs/2009.14794

Linear transformers

―――
Credits: https://arxiv.org/abs/2009.14794 23 / 32

https://arxiv.org/abs/2009.14794

Self-supervised learning

24 / 32

Self-supervised learning
Self-supervised learning uses pretext tasks hence the name self-supervised. For
NLP a strategy called Masked Language Modeling does the following:

Selects 15% of the tokens at random in a sequence

among them, replace 80% by the MASK token, 10% by a random code and leave

the remaining 10% unchanged

Predict the token hidden behind the MASK token

This self-supervised strategy is one of the core ingredient of BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding (https://arxiv.org/abs/1810.04805)

Other strategies involve sequence order prediction, among others

25 / 32

https://arxiv.org/abs/1810.04805

Self-supervised learning
Recent very impressive results in computer vision

Let's explain this variant :

A Simple Framework for Contrastive Learning of Visual Representations
(https://arxiv.org/abs/2002.05709)

―――
From https://arxiv.org/abs/2006.07733 26 / 32

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.07733

Self-supervised learning
The main ingredients for self-supervised learning (SimCLR version)

A stochastic data augmentation module. Transforms each input into

randomly data-augmented versions and . The pair is called a

positive pair.

x i

 x~i x~j (,)x~i x~j

―――
From https://arxiv.org/abs/2002.05709 27 / 32

https://arxiv.org/abs/2002.05709

Self-supervised learning
The main ingredients for self-supervised learning (SimCLR version)

An encoder (for instance a ResNet50) that we want to train. We compute

with it and

A projection head given by a simple feed-forward network, such as a 1-

hidden layer network

Create data-augmentations pairs of the size mini-batch. On a

positive pair we compute the contrastive loss

where is the cosine similarity

f(⋅)
h = f()i x~i h = f()j x~j

g(⋅)

z = g(h) = W ReLU(W h))i i
(2) (1)

i

 x~kk=1,…,2N N

(i, j)

ℓ(i, j) = − log (
 1 e∑k=1

2N
k≠i

sim(z ,z)/τi k

esim(z ,z)/τi j)
sim(u, v) = u v/∥u∥∥v∥⊤

28 / 32

Self-supervised learning
The main ingredients for self-supervised learning (SimCLR version)

The loss on the data-augmented mini-batch is given by x~kk=1,…,2N

 ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)
2N
1

k=1

∑
N

()

―――
From: https://arxiv.org/abs/2002.05709 29 / 32

https://arxiv.org/abs/2002.05709

Self-supervised learning
The main ingredients for self-supervised learning (SimCLR version)

―――
Credits: https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html 30 / 32

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html

Self-supervised learning
This version of self-supervised learning requires the use of large mini-batches

So that enough negatives are used in the contrastive loss

Strong computational and memory footprint

A convincing alternative approach is:

Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning
(https://arxiv.org/abs/2006.07733)

31 / 32

https://arxiv.org/abs/2006.07733

Thank You !

32 / 32

