23. Conditional Expectation

Let X and Y be two random variables with Y taking values in R with X
taking on only countably many values. It often arises that we know already the
value of X and want to calculate the expected value of Y taking into account
the knowledge of X. That is, suppose we know that the event {X = j}
for some value j has occurred. The expectation of Y may change given this
knowledge. Indeed, if Q(A) = P(A|X = j), it makes more sense to calculate
Eq{Y} than it does to calculate Ep{Y} (Er{-} denotes expectation with
respect to the Probability measure R.)

Definition 23.1. Let X have values {z1,%2,...,Zn,...} andY be a random
variable. Then if P(X = x;) > 0 the conditional expectation of Y given
{X =x;} is defined to be

B{Y|X = z;} = Eq{Y},

where Q is the probability given by Q(A) = P(A|X = &), provided Eg{|Y|} <
.

Theorem 23.1. In the previous setting, and if further Y is countably valued
with values {y1,y2, ..., Yn,...} and if P(X = z;) > 0, then

E{Y|X =a;} =Y yP(Y = ylX = 15),
k=1
provided the series is absolutely convergent.

Proof.

E{Y|X =2;} = Eo{V}=>_ uQ(Y =y) = > uhP(Y = | X = ;).

=1 k=1
O

Next, still with X having at most a countable number of values, we wish to
define the conditional expectation of any real valued r.v. Y given knowledge
of the random wvariable X, rather than given only the event {X = z;}. To
this effect we consider the function
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flz) = {E{Y'X =z} if P(X=x;)>0

any arbitrary value if P(X = :z:j) = (. (23.1)

Deﬁnitipn 23.2. Let X be countably valued and let Y be a real valued ran-
dom variable. The conditional ezpectation of Y given X is defined to be

E{YIX} = f(X),

wﬁere f is given by (25.1) provided f is well defined (that is, Y is integrable
with respect to the probability measure Q; defined by by @Q;(A) = P(AX =
z;), for all j such that P(X = x;) > 0).

Remark 23.1. The above definition does not really define E{Y|X} every-
where, but only almost everywhere since it is arbitrary on each set {X = xz}
such that P(X = ) = 0: this will be a distinctive feature of the conditional
expectation for more general r.v. X’s as defined below.

Example: Let X be a Poisson random variable with parameter \. When
X =n, we have that each one of the n outcomes has a probability of success
P, independently of the others. Let S denote the total number of successes.
Let us find E{S|X} and E{X|S}.

We first compute E{S|X = n}. If X = n, then § is binomial with param-
eters n and p, and E{S|X = n} = pn. Thus E{S|X} =pX.

To compute E{X|S}, we need to compute E{X|S = k}; to do this we
first compute P(X = n|S = k):

PX =nls =k = FEZHE SR =)
(D)pF(L = p)m* (2) e
Dmzk ()R —pym—k (A0) e

_ ((1(*11)2;7%6-(1-;0» '

for n > k. Thus,

E{X|S =k} — Z”%

n>k

e =k (1 - p),

hence,
E{X|S} =S5+ (1-p)A

Finally, one can check directly that E{S } = E{E{S|X}}; also this follows
from Theorem 23.3 below. Therefore, we also have that

E{S} = pE{X} =pX.
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Next we wish to consider the general case: that is, we wish to treat
E{Y|X} where X is no longer assumed to take only countably many val-
ues. The preceding approach does not work, because the events {X = z} in
general have probability zero. Nevertheless we found in the countable case
that E{Y|X} = f(X) for a function f, and it is this idea that extends to
the general case, with the aid of the next theorem. Let us recall a definition
already given in Chapter 10:

Definition 23.3. Let X: (2, A) — (R™, B") be measurable. The c-algebra
generated by X is o(X) = X }(B") (it is a o-algebra: see the proof of
Theorem 8.1), which is also given by

oX)={AcCc: X~YB) = A, for some B € B"}.

Theorem 23.2. Let X be an R™ valued random variable and let Y be an
R-valued random variable. Y is measurable with respect to o(X) if and only
if there exists a Borel measurable function f on R™ such that Y = f(X).

Proof. Suppose such a function f exists. Let B € B. Then Y }(B) =
XY fYB)). But A = f~}(B) € B", whence X 1(A) € o(X) (alterna-
tively, see Theorem 8.2).

Next suppose Y 1(B) € o(X), for each B € B. Suppose first ¥ =
E?:l a;14, for some k < oo, with the a;’s all distinct and the A;’s pair-
wise disjoint. Then A; € o(X), hence there exists B; € B™ such that
A; = X7Y(B)). Let f(z) = Y% a;1p,(z), and we have Y = f(X), with
f Borel measurable: so the result is proved for every simple r.v. Y which
is o(X)-measurable. If Y is next assumed only positive, it can be written
Y = lim, o Yy, where Y,, are simple and non-decreasing in n. (See for ex-
ample such a construction in Chapter 9.) Each Y,, is ¢(X) measurable and
also Y, = f,(X) as we have just seen. Set f(z) = limsup,,_, . fn(z). Then

Y = lim Y, = lim f,(X).
n—oe n

But
(limsup f,)(X) = limsup(/n(X)).
and since limsup,,_, . fn(x) is Borel measurable, we are done.
For general Y, we can write Y = Y™ — Y~ and we are reduced to the
preceding case. ]

In what follows, let (12, A, P) be a fixed and given probability space, and
let X : 2 — R". The space £3(£2, A, P) is the space of all random variables
Y such that E{Y?} < oo. If we identify all random variables that are equal
a.s., we get the space L?(§2, A, P). We can define an inner product (or “scalar
product”) by

(Y,Z) = E{Y Z}.




e
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Then L?(£2, A, P) is a Hilbert space, as we saw in Chapter 22. Since
o(X) C A, the set L?(£2,5(X), P) is also a Hilbert space, and it is a (closed)
Hilbert subspace of L?(§2, A, P). (Note that L?(£2,0(X), P) has the same
inner product as does L?(£2, A, P).)

Definition 23.4. Let Y € L%(¢2, .,fl, P). Then the conditional expectation of
Y given X is the unique element Y in L*(2,0(X), P) such that

E{YZ} = E{Y Z} for all Z € L*(2,0(X), P). (23.2)

We write
E{Y|X}

for the conditional expectation of Y given X, namely Y.

Note that Y is simply the Hilbert space projection of Y on the closed lin-
ear subspace L?(£2,0(X), P) of L?(£2, A, P): this is a consequence of Corol-
lary 22.1 (or Exercise 23.4), and thus the conditional expectation does exist.

Observe that since E{Y|X} is 0(X) measurable, by Theorem 23.2 there
exists a Borel measurable f such that E{Y|X} = f(X). Therefore (23.2) is
equivalent to

E{f(X)9(X)} = E{Y g(X)} (23.3)
for each Borel g such that g(X) € £2.

Next let us replace o(X) with simply a o-algebra G with G € A. Then
L2(0,G, P) is a sub-Hilbert space of L?*(£2, A, P), and we can make an anal-
ogous definition:

Definition 23.5. Let Y € L?(12, A, P) and let G be a sub o-algebra of A.
Then the conditional expectation of Y given G is the unique element E{Y'|G}
of L*(02,G, P) such that

E{YZ}=E{E{Y|G}Z} (23.4)
for all Z € L*(2,G, P).

Important Note: The conditional expectation is an element of L2, that
is an “equivalence class” of random variables. Thus any statement like
E{Y|G} > 0or E{Y|G} = Z, etc... should be understood with an implicit “al-
most surely” qualifier, or equivalently as such: there is a “version” of E{Y|G}
that is positive, or equal to Z, etc...

Theorem 23.3. Let Y € L2(2, A, P) and G be a sub o-algebra of A.

a) If Y > 0 then E{Y|G} > 0;

b) If G = o(X) for some random variable X , there exists a Borel measurable
function f such that E{Y |G} = f(X);

¢) E{E{Y[G}} = E{Y},

d) The map Y — E{Y|G} is linear.
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Proof. Property (b) we proved immediately preceding the theorem. For (c)
we need only to apply (23.4) with Z = 1. Property (d) follows from (23.4) as
well: if U,V are in L2, then

E{{U+aV)Z} = E{UZ} + aE{VZ}
= E{E{U|G}Z} + «E{E{V|G}Z}
= E{(E{U|G} + aE{V|G})Z},
and thus E{U + aV|G} = E{U|G} + aE{V|G} by uniqueness (alternatively,
as said before, E{Y|G} is the projection of Y on the subspace L?({2,G, P),
and projections have been shown to be linear in Corollary 22.2).

Finally for (a) we again use (23.4) and take Z to be 1{g(y|g}<0}, assuming
Y >0 a.s. Then E{Y Z} > 0 since both Y and Z are nonnegative, but

E(E(Y|G)Z) = E{E(Y|0} L spvigyen} <0 i PUE{YIG) < 0}) > 0.
This violates (23.3), so we conclude P({E{Y|G} < 0}) =0. O

Remark 23.2. As one can see from Theorem 23.3, the key property of
conditional expectation is the property (23.4); our only use of Hilbert space
projection was to show that the conditional expectation exists.

We now wish to extend the conditional expectation of Definition 23.4 to
random variables in L', not just random variables in L?. Here the technique
of Hilbert space projection is no longer available to us.

Once again let £1(£2, 4, P) be the space of all L! random variables; we
identify all random variables that are equal a.s. and we get the (Banach)
space L1(£2, A, P). Analogously, let LT(£2, A, P) be all nonnegative random
variables, again identifying all a.s. equal random variables. We allow random
variables to assume the value +oc.

Lemma 23.1. LetY € LT (2, A, P) and let G be a sub o-algebra of A. There
exists a unique element E{Y|G} of L™ (02,G, P) such that

E{YX} = E{E{Y|G}X} (23.5)

for all X in L*(£2,G, P) and this conditional expectation agrees with the one
in Definition 23.5 if further Y € L2(02, A, P). Moreover, if 0 <Y <Y/,
then

E{Y|G} < E{Y'|G}. (23.6)

Proof. If Y is in L?(£2, A, P) and positive, we define E{Y|G} as in Defini-
tion 23.5. If X in LT(£2,G, P) then X, = X A n is square-integrable. Hence
the Monotone Convergence Theorem (applied twice) and (23.5) yield

E{Y X} = lim B{Y X,.}
= lim B{E{Y |G} X}
= E{E{Y|G}X} (23.7)
and (23.5) holds for all positive X.
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Let now Y be in L*(§2, A, P). Each Y,, = Y Am is bounded and hence
in L?, and by Theorem 23.3. conditional expectation on L? is a positive
operator, so E{Y A m|G} is increasing; therefore the following limit exists
and we can set

E{Y|G} = lim_E{Y[G} (238)

If X € LT(2,G, P), we apply the Monotone Convergence Theorem several
times as well as (23.8)to deduce that:

B{YX} = lim E{Y;u X }

= E{lm B{Y,./6}X }
=FE{E{Y|G}X}.
Furthermore if Y < Y” we have Y Arn < Y/ Am for all m, hence E{Y Am|G} <
E{Y’ Am|G} as well by Theorem 23.3(a). Therefore (23 6) holds.
It remains to establish the uniqueness of E{Y|G} as defined above. Let U

and V' be two versions of E{Y|G} and let 4,, = {U <V < n} and suppose
P(Ay) > 0. Note that A, € G. We then have

E{Y14,} = E{Uls,} = B{V1, }.

since E{Y' 1,4} = E{E{Y|G}14} for all A € G by (23.7). Further, 0 < Ul,, <
V1, <n, and P(4,) > 0 implies that the r.v. V1,4, and Ul,, are not a.s.
equal: we deduce that E{U1,} < E{V1,}, whence a contradiction. Therefore
P(An) = 0 for all n, and since {U > V} = U,»14,, we get P{U < V}) = 0;
analogously P({V > U}) = 0, and we have uniqueness. O

Theorem 23.4. Let Y € L*(£2, A, P) and let G be a sub o-algebra of A.
There ezists a unique element E{Y |G} of L'(£2,G, P) such that
E{YX}=E{E{Y|G}X} (23.9)

for all bounded G-measurable X and this conditional expectation agrees with
the one in Definition 23.5 (resp. Lemma 23.1) when further Y € L2(12, A, P)
(resp. Y > 0), and satisfies

a) IfY >0 then E{Y|G} > 0;
b) The map Y — E{Y|G} is linear.

Proof. Since Y is in L', we can write
Y=Y Y~

where Y+ = max(Y,0) and Y~ = — min(¥,0): moreover Y+ and Y ~ are also
in LY(£2,G, P). Next set

E{Y|G} = E{Y |G} - E{Y [G}.
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This formula makes sense: indeed the r.v. Y and Y, hence E{Y*|G} and
E{Y |G} as well by Theorem 23.3(c), are integrable, hence a.s. finite. That
E{Y|G} satisfies (23.9) follows from Lemma 23.1. For uniqueness, let U,V be
two versions of E{Y|G}, and let A = {U < V}. Then A € G, so 14 is bounded
and G-measurable. Then E{Y 1,4} = E{E{Y|G}14} = E{U1,4} = E{V14}.
But if P(A) > 0, then E{U1,4} < E{V1,4}, which is a contradiction. So
P(A) =0 and analogously P({V < U}) =0 as well.

The final statements are trivial consequences of the previous definition of
E{Y|G} and of Lemma 23.1 and Theorem 23.3. O

Example: Let (X, Z) be real-valued random variables having a joint density
f(z,z). Let g be a bounded function and let

Y =g(2).

We wish to compute E{Y|X} = E{g(Z)|X}. Recall that X has density fx

given by
@ = [ f(a.2)a

and we defined in Chapter 12 (see Theorem 12.2) a conditional density for Z

given X =z by: fa2)
x, 2
fx(z)’

Frmalz) =
whenever fx (z) # 0. Next consider
) = [ 9(2) fxale)de
We then have, for any bounded Borel function k(z):
(XX} = [ ha)h(z) fx(e)da
— [[ 90 frmatriz hie) (o)
~ [ 5= D ki pe @iz do

// 2)k(z) f(x, z)dz dx

= E{g(2)k(X)} = E{YK(X)}.

Therefore by (23.9) we have that
E{Y|X} = h(X).

This gives us an explicit way to calculate conditional expectations in the case
when we have densities.
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Theorem 23.5. LetY be a positive or integrable r.v. on (2, F, P). Let G be
a sub o-algebra. Then E{Y|G} =Y if and only if Y is G-measurable.

Proof. This is trivial from the definition of conditional expectation. O

Theorem 23.6. Let Y € LY (2, A, P) and suppose X and Y are indepen-
dent. Then

E{Y|X} = B{Y}.

Proof. Let g be bounded Borel. Then E{Yg(X)} = E{V}E{g(X)} by in-
dependence. Thus taking f(z) = E{Y'} for all x (the constant function) in
Theorem 23.2, we have the result by (23.9). O

Theorem 23.7. Let X,Y be random variables on (2, A, P), let G be a sub
o-algebra of A, and suppose that X is G-measurable. In the two following
cases:

a) the variables X, Y and XY are integrable,
b) the variables X and Y are positive,

we have
E{XY|G} = XE{Y|G}.

Proof. Assume first (b). For any G-measurable positive r.v. Z we have
E{XYZ} = E{XZE{Y|G}}

by (23.5). Since XE{Y|G} is also g-measurable, we deduce the result by
another application of the characterization (23.5).

In case (a), we observe that XY+, X~Y+ X+tY~ and X~V - are all
integrable and positive. Then E{X*+Y*|g} = X*YE{Y*|G} by what pre-
cedes, and similarly for the other three products, and all these quantities are
finite. It remains to apply the linearity of the conditional expectation and
the property XY = X+Y+ 4 X-Y- - X+y- — x-y+, O

Let us note the important observation that the principal convergence
theorems also hold for conditional expectations (we choose to emphasize be-
low the fact that all statements about conditional expectations are “almost
sure” );

Theorem 23.8. Let (Yo)n>1 be a sequence of r.v.’s on (£2, A, P) and let G
be a sub o-algebra of A.

a) (Monotone Convergence.) If Y, > 0, n > 1, and Y,, increases to Y a.s.,
then

IE&E{YR|Q} = E{Y|G} as.;
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b) (Fatou’s Lemma.) If Y, > 0. n > 1, then

Efliminf Y, |G} < liminf E{Y,|g} ~a.s.;

c) (Lebesgue’s dominated convergence theorem.) If lim, ..o Y, =Y a.s. and
Y. < Z (n>1) for some Z € LY(12, A, P), then

Tim B{Y,} = E{Y|G} as..

Proof. a) By (23.6) we have E{Y,,11|G} > E{Y,|G} a.s., each n; hence U =
limg, .o E{Y5|G} exists a.s. Then for all positive and G-measurable r.v. X

we have:
E{UX} = lim E{E{Y,|G}X}
= lim E{Y,X}
by (23.5); and
= lim E{Y X}

n—oo

by the usual monotone convergence theorem. Thus U = E{Y|G}, again by

23.5). _
( The proofs of (b) and (c) are analogous in a similar vein to the proofs of

Fatou’s lemma and the Dominated Convergence Theorem without condition-

ing. O

We end with three useful inequalities.

Theorem 23.9 (Jensen’s Inequality). Let o: R — R be convez, and let
X and ¢(X) be integrable random variables. For any o-algebra G,

po E{X|G} < E{p(X)|G}.

Proof. A result in real analysis is that if ¢ : R — R is convex, then ¢(z) =
sup,, (anx + by,) for a countable collection of real numbers (an, b,). Then

B{anX +balG} = anE{X|G} + by

But E{a,X +b,|G} < E{¢(X)|G}, hence a, E{X|G} + b, < E{p(X)|G}, all
n. Taking the supremum in n, we get the result. O

Note that ¢(z) = 22 is of course convex, and thus as a consequence of
Jensen’s inequality we have

(BE{X|6})* < B{X?|g}.

An important consequence of Jensen’s inequality is Holder’s inequality
for random variables.
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Theorem 23.10 (Hélder’s Inequality). Let X,Y be random variables
with E{|X|P} < o, E{[Y]?} < oc, where p > 1, and % +$ = 1. Then

|[E{XY}| < E{|XY |} < B{|X["}5 B{|X|7}.

(He?ice X € LP andY € L2 with p, q as above, then the product XY belongs
to L').

Proof. Without loss of generality we can assume X >0, Y > 0 and E{X?} >
0, since E{X”?} = 0 implies X” = 0 a.s., thus X = 0 a.s. and there is nothing
to prove. Let C'= E{X?} < co. Define a new probability measure @ by

1
Q(A) = EE{I,‘X"}.
Next define Z = %1{)90}. Since p(x) = |z|? is convex, Jensen’s inequality
(Theorem 23.9) yields
(Eo{Z))" < B{29).
Thus,

éE{XY}q = %E {ﬁ’i—lxp}q
(s
ro{(0=r) )
= (m=) )
E{wﬁxr’},

and ¢ = ;25 while (p — 1)g = p, hence

<

Ql= Q=

1 1
= __Eglyi_L xr
B
1
= ~E{Y9)}.
Ligry
Thus
E{XY}! < CU E{y?},
and taking ¢** roots yields
E{XY} < C*T B{Y9)3.

Since 1 = 1 and C = E{X?}, we have the result. O
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Corollary 23.1 (Minkowski’s Inequality). Let X.Y be random variables
and 1 < p < oo with E{|X|P} < oc and E{|Y|P} < oc. Then
E{|X + Y|P} < E{X?}? + B{Y?}5.
Proof. If p = 1 the result is trivial. We therefore asume that p > 1. We use
Holder’s inequality (Theorem 23.10). We have
E{X +Y [P} = E{IX[|X + Y[} + E{|Y[|X +Y["~"}
< B{|X[P}PE{|X + Y|®" V)5 4 B{lY [P} E{|X + Y|P Do},

But (p~1)g = p, and é =1- %, hence

1—1

= (BOXPY? + B{YEYP ) E(X + Y} 5

and we have the result. O

Minkowski's inequality allows one to define a norm (satisfying a triangle
inequality) on the space LP of equivalence classes (for the relation “equality
a.s.”) of random variables with E{|X|?} < oc.

Definition 23.6. For X in LP?, define a norm by
X1, = E{IX"[}>.

Note that Minkowski’s inequality shows that L? is a bonafide normed lin-
ear space. In fact it is even a complete normed linear space (called a “Banach
space”). But for p # 2 it is not a Hilbert space: the norm is not associated
with an inner product.
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Exercises for Chapter 23

For Exercises 23.1-23.6, let Y be a positive or integrable random variable on
the space (12, A, P) and G be a sub o-algebra of A.

23.1 Show [E{Y|G}| < E{|Y||G}.

23.2 Suppose H C G where H is a sub o-algebra of G. Show that
E{E{Y|G}H} = E{Y|H}.

23.3 Show that E{Y|Y} =Y aus.

23.4 Show that if |Y] < c a.s. then [E{Y|G}| < ¢ a.s. also.

23.5 f Y = a a.s., with a a constant, show that E{Y|G} = a as.

23.6 It Y is positive, show that {E{Y|G} =0} C {Y =0} and {Y = +oc} C
{E{Y|G} = +oc} almost surely.

23.7* Let X,Y be independent and let J be Borel such that f(X,Y) €
L}(£2, A, P). Let

o) = { U@} BV} <o

otherwise.
Show that g is Borel on R and that
E{f(X,Y)|X} = g(X).

23.8 Let Y be in L2(£2, A, P) and suppose E{Y? | X} = X% and E{Y |
X} =X.Show Y = X as.

23.9* Let Y be an exponential r.v. such that P({Y > t}) =etfort>0.
Calculate E{Y [ Y At}, where Y At = min(¢, ).

23.10 (Chebyshev’s inequality). Prove that for X € L2 and ¢ > 0, P(|X| >
E{X?|g}
alg) < 2555

23.11 (Cauchy-Schwarz). For X,Y in L? show
(E{XY|G})* < E{X*|G}E{Y?|G}.
28.12 Let X € L2 Show that
E{(X - E{X|0})*} < E{(X — E{X})?}.

23.13 Let p > 1 and r > p. Show that LP > L™, for expectation with respect
to a probability measure.
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23.14* Let Z be defined on (2. F,P) with Z > 0 and E{Z} = 1. Define
a new probability @ by Q(A) = E{1,Z}. Let G be a sub o-algebra of F,
and let U = E{Z|G}. Show that Eg{X|G} = %, for any bounded
F-measurable random variable X. (Here Eg{X|G} denotes the conditional
expectation of X relative to the probability measure Q.)

23.15 Show that the normed linear space LP is complete for each p, 1 <p <
oo. (Hint: See the proof of Theorem 22.2.)

23.16 Let X € LY(§2,F, P) and let G, H be sub o-algebras of F. Moreover
let H be independent of o(c(X),G). Show that E{X|c(G,H)} = E{X|G}.

23.17 Let (Xn)n>1 be independent and in L' and let S, = > X; and
Gn = 0(Sn:Snt1,...). Show that E{X:|G,} = E{X: | S,} and also
E{X;|G,} = E{X, | Su} for 1 < j < n. Also show that E{X,|G.} =
E{X{|S,} for 1 < j < n (Hint: Use Exercise 23.16.)




