Feuille 3: correction

Exercice 1 (Tests dans le modèle gaussien)

- 1. Test de Student d'une relation affine.
 - (a) Comme $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2({}^tXX)^{-1})$, on a ${}^tc\hat{\beta} {}^tc\beta \sim \mathcal{N}(0, \sigma^2{}^tc({}^tXX)^{-1}c)$. De plus, on sait par le théorème de Cochran que $\frac{(n-p)\widehat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p)$ et que que $\widehat{\beta}$ et $\widehat{\sigma}^2$ sont indépendantes. Donc la variable

$$\frac{{}^{t}c\widehat{\beta}-{}^{t}c\beta}{\widehat{\sigma}\sqrt{{}^{t}c({}^{t}XX)^{-1}c}}=\frac{\frac{{}^{t}c\widehat{\beta}-{}^{t}c\beta}{\sigma\sqrt{{}^{t}c({}^{t}XX)^{-1}c}}}{\sqrt{\frac{(n-p)\widehat{\sigma}^{2}}{(n-p)\sigma^{2}}}}$$

suit une loi de Student $\mathcal{T}(n-p)$.

- (b) Sous H_0 , on sait que la statistique $T_n = \frac{{}^t c \widehat{\beta} a}{\widehat{\sigma} \sqrt{{}^t c ({}^t X X)^{-1} c}}$ suit une loi de Student $\mathcal{T}(n-p)$. En notant $t_{n-p}(1-\alpha/2)$ le quantile d'ordre $1-\alpha/2$ de la loi de Student $\mathcal{T}(n-p)$, le test qui rejette H_0 si et seulement si $|T_n| > t_{n-p}(1-\alpha/2)$ est donc un test de niveau α .
- (c) Par la question 1.(a), l'intervalle

$$\left[{}^{t}c\widehat{\beta} - t_{n-p}(1 - \alpha/2)\widehat{\sigma}\sqrt{{}^{t}c({}^{t}XX)^{-1}c} \,, \, {}^{t}c\widehat{\beta} + t_{n-p}(1 - \alpha/2)\widehat{\sigma}\sqrt{{}^{t}c({}^{t}XX)^{-1}c} \right]$$

est un intervalle de niveau $1 - \alpha$ pour ${}^t c\beta$.

- 2. Test de Fisher d'un sous-modèle.
 - (a) On décompose \mathbb{R}^n en $\mathbb{R}^n = W \oplus W^{\perp v} \oplus V^{\perp}$, où $W^{\perp v}$ est le sous-espace orthogonal à W dans V. Par le théorème de Cochran, on a
 - $-P_WY \sim \mathcal{N}(P_WX\beta, \sigma^2 P_W);$
 - $--P_{W^{\perp}V}Y \sim \mathcal{N}(P_{W^{\perp}V}X\beta, \sigma^2 P_{W^{\perp}V});$
 - $-P_{V^{\perp}}Y \sim \mathcal{N}(0, \sigma^2 P_{V^{\perp}});$
 - les variables $P_W Y$, $P_{W^{\perp}V} Y$ et $P_{V^{\perp}} Y$ sont indépendantes; $\sigma^{-2} \| P_W (Y X\beta) \|^2 \sim \chi^2(q)$; $\sigma^{-2} \| P_{W^{\perp}V} (Y X\beta) \|^2 \sim \chi^2(p q)$; $\sigma^{-2} \| P_{V^{\perp}} Y \|^2 \sim \chi^2(n p)$;

Remarquons que si $X\beta \in W$, alors $P_{W^{\perp_V}}X\beta = 0$ et $\sigma^{-2} \|P_{W^{\perp_V}}Y\|^2$ suit la loi $\chi^2(p-q)$. Donc, par indépendance de $P_{W^{\perp}V}Y$ et $P_{V^{\perp}Y}$, si $X\beta \in W$, la statistique

$$F = \frac{\|P_{W^{\perp_V}}Y\|^2/(p-q)}{\|P_{V^{\perp}}Y\|^2/(n-p)}$$

suit une loi de Fisher $\mathcal{F}(p-q,n-p)$.

- (b) En notant $f_{p-q,n-p}(1-\alpha)$ le quantile d'ordre $1-\alpha$ de la loi de Fisher $\mathcal{F}(p-q,n-p)$, on déduit de la question précédente que le test qui rejette H_0 si et seulement si $F>f_{p-q,n-p}(1-\alpha)$ est un test de niveau α .
- (c) Si q=p-1, le sous-espace W est un hyperplan de V. Donc il existe $h \in V$ tel que

$$X\beta \in W \iff {}^{t}hX\beta = 0 \iff {}^{t}c\beta = 0$$
.

avec $c = {}^tXh$. Ainsi tester si $X\beta \in W$ revient à tester si ${}^tc\beta = a$ avec $c = {}^tXh$ et a = 0. Montrons maintenant que dans ce cas, les deux tests obtenus sont les mêmes. Plus précisément, montrons que $|T_n|^2 = F$ et $t_{n-p}(1-\alpha/2)^2 = f_{1,n-p}(1-\alpha)$. Notons d'abord que si $Z \sim \mathcal{T}(n-p)$, alors, $Z^2 \sim \mathcal{F}(1, n-p)$. On a donc bien $t_{n-p}(1-\alpha/2)^2 = f_{1,n-p}(1-\alpha)$. La statistique du test de la question 1 élevée au carré est :

$$|T_n|^2 = \frac{({}^t c\widehat{\beta})^2}{\widehat{\sigma}^2 {}^t c({}^t X X)^{-1} c} = \frac{({}^t h X \widehat{\beta})^2}{\widehat{\sigma}^2 {}^t h P_V h} = \frac{({}^t h X \widehat{\beta})^2}{\widehat{\sigma}^2 ||h||^2}.$$

Par définition, $\widehat{\sigma}^2 = \frac{\|P_{V^{\perp}}Y\|^2}{n-p}$. D'autre part, puisque W est l'hyperplan de V orthogonal au vecteur h de V, W^{\perp_V} est l'espace vectoriel engendré par h, et $P_{W^{\perp_V}}Y = P_{W^{\perp_V}}X\widehat{\beta} = \langle h, X\widehat{\beta}\rangle \frac{h}{\|h\|^2}$. Ainsi

$$\|P_{W^{\perp_{V}}}Y\|^{2} = \frac{(\,{}^{t}hX\widehat{\beta})^{2}}{\|h\|^{2}}$$

et l'on a bien $F = |T_n|^2$.

- 3. Test de Wald de plusieurs hypothèses affines.
 - (a) On a

$$C\widehat{\beta} - C\beta \sim \mathcal{N}(0, \sigma^2 C({}^t XX)^{-1} {}^t C)$$

(b) Clairement, la matrice Σ est symétrique. De plus, pour $x \in \mathbb{R}^k$, on a

$${}^{t}x\Sigma x = {}^{t}({}^{t}Cx)({}^{t}XX)^{-1}{}^{t}Cx$$

Si x est non nul, alors, comme tC est de rang k donc injective, le vecteur tCx est lui aussi non nul. Et comme $({}^tXX)^{-1}$ est définie positive, on a ${}^t({}^tCx)({}^tXX)^{-1}{}^tCx > 0$.

(c) On peut écrire $\Sigma = Q\Delta Q^{-1}$ avec Δ une matrice diagonale et Q une matrice orthogonale. On définit alors $\Sigma^{1/2} = Q\Delta^{1/2}Q^{-1}$, où $\Delta^{1/2}$ est la matrice diagonale dont les coefficients sont les racines carrées des coefficients de Δ . On a alors

$$\frac{\Sigma^{-1/2}(C\widehat{\beta} - C\beta)}{\sigma} \sim \mathcal{N}(0, I_k),$$

et donc

$$\frac{\|\Sigma^{-1/2}(C\widehat{\beta}-C\beta)\|^2}{\sigma^2} = \frac{1}{\sigma^2} {}^t (C\widehat{\beta}-C\beta) \Sigma^{-1}(C\widehat{\beta}-C\beta) \sim \chi^2(k) \,.$$

De plus

$$\frac{\|Y - X\widehat{\beta}\|^2}{\sigma^2} = \frac{(n-p)\widehat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p),$$

et $\widehat{\beta}$ et $\widehat{\sigma}^2$ sont indépendantes. Donc la variable

$$\frac{{}^{t}(C\widehat{\beta}-C\beta)\Sigma^{-1}(C\widehat{\beta}-C\beta)/k}{\widehat{\sigma}^{2}}$$

suit une loi de Fisher $\mathcal{F}(k, n-p)$.

(d) Sous H_0 , la statistique

$$W = \frac{{}^{t}(C\widehat{\beta} - a)\Sigma^{-1}(C\widehat{\beta} - a)/k}{\widehat{\sigma}^{2}}$$

suit une loi de Fisher $\mathcal{F}(k, n-p)$. Ainsi, en notant $f_{k,n-p}(1-\alpha)$ le quantile d'ordre $1-\alpha$ de la loi de Fisher $\mathcal{F}(k, n-p)$, le test qui rejette H_0 si et seulement si $W > f_{k,n-p}(1-\alpha)$ est un test de niveau $1-\alpha$

(e) Le sous-ensemble de \mathbb{R}^k défini par

$$\mathcal{E}_{\alpha} = \left\{ a \in \mathbb{R}^k, \ \frac{\|\Sigma^{-1/2}(C\widehat{\beta} - a)\|^2/k}{\widehat{\sigma}^2} \le f_{k,n-p}(1 - \alpha) \right\}$$

est une ellipsoïde de confiance de niveau $1 - \alpha$ pour $C\beta$.

Exercice 2 (Régression Ridge - Régularisation de Tikhonov)

- 1. Si k > n, le noyau de X n'est pas réduit à 0 et cela équivaut à dire que la matrice X^TX n'est pas inversible. Le modèle n'est pas identifiable et il existe une infinité de solutions à l'équation $X^TX\theta = X^TY$.
- 2. La fonction $f: \theta \mapsto \|Y X\theta\|^2 + \lambda \|\theta\|^2$ est strictement convexe et différentiable. Le minimiseur est donc un point critique :

$$\nabla f(\theta) = 2X^T(X\theta - Y) + 2\lambda\theta = 0 \iff (X^TX + \lambda I)\theta = X^TY.$$

Comme $\lambda > 0$, la matrice $X^TX + \lambda I$ est définie positive, donc inversible. L'unique solution est

$$\widehat{\theta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T Y.$$

3. On a

$$\mathbb{E}[\widehat{\theta}_{\lambda}] = (X^T X + \lambda I)^{-1} X^T X \theta \neq \theta,$$

et

$$\operatorname{Cov}(\widehat{\theta}_{\lambda}) = (X^T X + \lambda I)^{-1} X^T \operatorname{Cov}(Y) X (X^T X + \lambda I)^{-1}$$
$$= \sigma^2 (X^T X + \lambda I)^{-1} X^T X (X^T X + \lambda I)^{-1}$$
$$= \sigma^2 (X^T X + \lambda I)^{-1} \left(I - \lambda (X^T X + \lambda I)^{-1} \right).$$

Exercice 3 (Maximum de gaussiennes corrélées)

1. On a $\max(X_1, X_2) = \frac{1}{2} (X_1 + X_2 + |X_1 - X_2|)$. Comme $\mathbb{E}[X_1] = \mathbb{E}[X_2] = 0$, on obtient $\mathbb{E}[\max(X_1, X_2)] = \frac{1}{2} \mathbb{E}[|X_1 - X_2|]$. Or $X_1 - X_2 \sim \mathcal{N}(0, 2(1 - \rho))$. Ainsi

$$\mathbb{E}\left[\max(X_1, X_2)\right] = \int_0^{+\infty} \frac{1}{\sqrt{4\pi(1-\rho)}} x e^{-\frac{x^2}{4(1-\rho)}} dx$$
$$= \sqrt{\frac{1-\rho}{\pi}} \left[-e^{-\frac{x^2}{4(1-\rho)}} \right]_0^{+\infty} = \sqrt{\frac{1-\rho}{\pi}} .$$

2. On peut remarquer que

$$(X_1,\ldots,X_n)\sim(\sqrt{\rho}Y+\sqrt{1-\rho}Y_1,\ldots,\sqrt{\rho}Y+\sqrt{1-\rho}Y_n),$$

où Y, Y_1, \ldots, Y_n sont i.i.d. de loi $\mathcal{N}(0, 1)$. En effet, il s'agit bien d'un vecteur gaussien, d'espérance nulle, et l'on a, pour tout $i \in [1, n]$,

$$Var(\sqrt{\rho}Y + \sqrt{1-\rho}Y_i) = (\sqrt{\rho})^2 + (\sqrt{1-\rho})^2 = 1$$
,

et pour $i \neq j$, par indépendance de Y, Y_i et Y_j ,

$$\operatorname{Cov}(\sqrt{\rho}Y + \sqrt{1-\rho}Y_i, \sqrt{\rho}Y + \sqrt{1-\rho}Y_i) = \operatorname{Cov}(\sqrt{\rho}Y, \sqrt{\rho}Y) = \rho.$$

Avec cette représentation, on voit que

$$a_n(\rho) = \mathbb{E}\left[\sqrt{\rho}Y + \sqrt{1-\rho}\max(Y_1,\ldots,Y_n)\right] = \sqrt{1-\rho}a_n(0).$$

3. En utilisant l'inégalité de Jensen puis le fait que le maximum de variables positives est inférieur à la somme, on a, pour tout $\lambda \in \mathbb{R}_+$,

$$\begin{split} e^{\lambda \mathbb{E}[\max_{1 \leq i \leq n}(X_i)]} &\leq \mathbb{E}\left[e^{\lambda \max_{1 \leq i \leq n}(X_i)}\right] \\ &= \mathbb{E}\left[\max_{1 \leq i \leq n} e^{\lambda X_i}\right] \\ &\leq \sum_{i=1}^n \mathbb{E}\left[e^{\lambda X_i}\right] = n \mathbb{E}\left[e^{\lambda X_1}\right] = n e^{\lambda^2/2} \,, \end{split}$$

où l'on a utilisé que la transformée de Laplace d'une loi $\mathcal{N}(0, \sigma^2)$ est donnée par $\lambda \mapsto e^{\frac{\lambda^2 \sigma^2}{2}}$. Ainsi pour tout $\lambda \in \mathbb{R}_+^*$,

$$a_n(0) \le \frac{1}{\lambda} \left(\ln(n) + \frac{\lambda^2}{2} \right)$$

En optimisant sur $\lambda > 0$, on obtient, pour $\lambda = \sqrt{2 \ln(n)}$,

$$a_n(0) \le \sqrt{2\ln(n)}$$
.

Exercice 4 (Maximum de variables de Poisson indépendantes)

1. On utilise la même méthode que dans l'exercice précédent. Pour tout $\lambda \in \mathbb{R}_+$, par l'inégalité de Jensen,

$$e^{\lambda \mathbb{E}[\max_{1 \leq i \leq n} X_i]} \leq \mathbb{E}\left[\max_{1 \leq i \leq n} e^{\lambda X_i}\right] \leq n \mathbb{E}\left[e^{\lambda X_1}\right] = n e^{e^{\lambda} - 1} \,.$$

Ainsi pour tout $\lambda \in \mathbb{R}_+^*$,

$$\mathbb{E}\left[\max_{1\leq i\leq n} X_i\right] \leq \frac{1}{\lambda} \left(\ln(n) + e^{\lambda} - 1\right).$$

En choisissant λ tel que $e^{\lambda} - 1 = \ln(n)$, soit $\lambda = \ln(1 + \ln(n))$, on obtient

$$\mathbb{E}\left[\max_{1 \le i \le n} X_i\right] \le \frac{2\ln(n)}{\ln\left(1 + \ln(n)\right)} \cdot$$

2. Pour tout $k \in \mathbb{N}^*$, on a, par l'inégalité de Markov.

$$\mathbb{E}\left[\max_{1\leq i\leq n} X_i\right] \geq k\mathbb{P}\left(\max_{1\leq i\leq n} X_i \geq k\right)$$

$$= k\left(1 - \mathbb{P}\left(\max_{1\leq i\leq n} X_i < k\right)\right)$$

$$= k\left(1 - \mathbb{P}(X_1 < k)^n\right)$$

$$= k\left(1 - \left(1 - \mathbb{P}(X_1 \geq k)\right)^n\right)$$

$$\geq k\left(1 - \left(1 - \mathbb{P}(X_1 = k)\right)^n\right).$$

On a

$$\mathbb{P}(X_1 = k) = \frac{e^{-1}}{k!} \ge \frac{e^{-1}}{k^k} \cdot$$

Pour $k = \left\lfloor \frac{\ln(n)}{\ln \ln(n)} \right\rfloor$, on a $k^k \leq n$. Ainsi

$$\mathbb{E}\left[\max_{1\leq i\leq n} X_i\right] \geq \left\lfloor \frac{\ln(n)}{\ln\ln(n)} \right\rfloor \left(1 - \left(1 - \frac{e^{-1}}{n}\right)^n\right) \geq \left\lfloor \frac{\ln(n)}{\ln\ln(n)} \right\rfloor \left(1 - e^{-e^{-1}}\right).$$

Exercice 5 (Conditionnement linéaire gaussien)

Voir le poly de S. Boucheron, section 2.5.

Exercice 6 (Statistique exhaustive, statistique complète)

1. (a) Posons $\theta = e^{-\lambda} \in]0,1]$. La densité de X s'écrit, pour tout $x \in \mathbb{N}^n$,

$$f_{\theta}(x) = \prod_{i=1}^{n} \frac{\theta(\ln(1/\theta))^{x_i}}{x_i!} = \frac{1}{\prod_{i=1}^{n} x_i!} \theta^n(\ln(1/\theta))^{\sum_{i=1}^{n} x_i}.$$

Ainsi, la propriété de factorisation est vérifiée avec $T(x) = \sum_{i=1}^n x_i$, $h(x) = (\prod_{i=1}^n x_i!)^{-1}$, et $g(\theta, T(x)) = \theta^n (\ln(1/\theta))^{T(x)}$. On peut aussi vérifier que la loi de X sachant $S_n = \sum_{i=1}^n X_i$ ne dépend pas de θ . En effet, la variable S_n suit une loi de Poisson de paramètre $n\lambda$. Ainsi

$$\mathbb{P}(S_n = k) = \frac{e^{-\lambda n} (n\lambda)^k}{k!} = \frac{\theta^n (n \ln(1/\theta))^k}{k!},$$

et pour $x = (x_1, \ldots, x_n)$ tel que $\sum x_i = k$, on a

$$\mathbb{P}\left(X=x\mid S_n=k\right) = \frac{\mathbb{P}(X=x)}{\mathbb{P}(S_n=k)} = \frac{\theta^n(\ln(1/\theta))^k}{\prod_{i=1}^n x_i!} \cdot \frac{k!}{\theta^n(n\ln(1/\theta))^k} = \frac{\binom{k}{x_1,\dots,x_n}}{n^k},$$

où $\binom{k}{x_1,\ldots,x_n}$ est le nombre de mots de longueur k que l'ont peut former avec un alphabet de taille n en utilisant x_1 fois la lettre $1,\ldots,x_n$ fois la lettre n (coefficient multinomial). La loi de X sachant $S_n=k$ est appelée loi multinomiale de paramètres k et $(1/n,\ldots,1/n)$. En particulier, la loi de X sachant S_n est indépendante de θ .

(b) Notons $x \mapsto g(x \mid T(X))$ la densité conditionnelle de X sachant T(X). Comme T est exhaustive, cette fonction ne dépend pas de θ . On a

$$\theta^*(X) = \int_E \widehat{\theta}(x)g(x \mid T(X))d\mu(x).$$

La variable $\theta^*(X)$ est donc une fonction mesurable de X ne dépendant pas de θ . C'est bien un estimateur. Le théorème de Rao-Blackwell découle simplement de l'inégalité de Jensen conditionnelle. En effet,

$$\mathbb{E}\left[\left\|\theta^{*}(X) - \theta\right\|^{2}\right] = \sum_{j=1}^{d} \mathbb{E}\left[\left(\theta^{*}(X)_{j} - \theta_{j}\right)^{2}\right]$$

$$= \sum_{j=1}^{d} \mathbb{E}\left[\left(\mathbb{E}\left[\widehat{\theta}(X)_{j} \mid T(X)\right] - \theta_{j}\right)^{2}\right]$$

$$\leq \sum_{j=1}^{d} \mathbb{E}\left[\mathbb{E}\left[\left(\widehat{\theta}(X)_{j} - \theta_{j}\right)^{2} \mid T(X)\right]\right]$$

$$= \sum_{j=1}^{d} \mathbb{E}\left[\left(\widehat{\theta}(X)_{j} - \theta_{j}\right)^{2}\right]$$

$$= \mathbb{E}\left[\left\|\widehat{\theta}(X) - \theta\right\|^{2}\right].$$

(c) Dans le cas poissonien, on a vu que la somme S_n était une statistique exhaustive. La version Rao-Blackwellisée de W est alors

$$\mathbb{E}[W \mid S_n] = \mathbb{E}[\mathbb{1}_{X_1=0} \mid S_n] = \mathbb{P}(X_1=0 \mid S_n).$$

Pour $k \in \mathbb{N}$, on a

$$\mathbb{P}(X_1 = 0 \mid S_n = k) = \frac{\mathbb{P}(X_1 = 0, S_n = k)}{\mathbb{P}(S_n = k)} = \frac{\mathbb{P}(X_1 = 0)\mathbb{P}(S_{n-1} = k)}{\mathbb{P}(S_n = k)},$$

où l'on a utilisé que l'événement $\{X_1 = k\} \cup \{S_n = k\}$ est égal à l'événement $\{X_1 = 0\} \cup \{X_2 + \dots + X_n = k\}$. Or ces deux événement sont indépendants, et $X_2 + \dots + X_n$ a la même loi que S_{n-1} . En utilisant la formule pour $\mathbb{P}(S_n = k)$ donnée plus haut et le fait que $\mathbb{P}(X_1 = 0) = \theta$, on a

$$\mathbb{P}(X_1 = 0 \mid S_n = k) = \theta \frac{\theta^{n-1}(n-1)^k}{\theta^n n^k} = \left(1 - \frac{1}{n}\right)^k.$$

Ainsi

$$\mathbb{E}[W \mid S_n] = \left(1 - \frac{1}{n}\right)^{S_n}.$$

2. (a) On se place dans le cas poissonien avec $S_n = \sum X_i$. Soit $g : \mathbb{N} \to R$ telle que pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[g(S_n)] = 0$. Ainsi pour tout $\lambda \geq 0$,

$$\sum_{k>0} g(k) \frac{(n\lambda)^k}{k!} = 0.$$

Pour $\lambda = 0$, on obtient g(0) = 0. Puis, pour $j \ge 1$, en dérivant j fois par rapport à λ , on a

$$\sum_{k>j} g(k)n^k \frac{\lambda^{k-j}}{(k-j)!} = 0,$$

et en évaluant cette égalité en $\lambda = 0$, on obtient g(j) = 0. Ainsi g est la fonction nulle et l'on a bien, pour tout $\theta \in]0,1]$, $\mathbb{P}_{\theta}(g(S_n)=0)=1$. La statistique S_n est donc bien une statistique complète.

(b) Tout d'abord, montrons que si T^* est un estimateur sans biais de risque quadratique minimal, alors il est unique p.s. Soit T un estimateur sans biais de θ avec $\mathbb{E}[\|T - \theta\|^2] = \mathbb{E}[\|T^* - \theta\|^2] = R_{min}$, où R_{min} est le risque minimal. Considérons l'estimateur $T' = \frac{T^* + T}{2}$. Alors T' est lui aussi sans biais. Et son risque vérifie :

$$\mathbb{E} [\|T' - \theta\|^{2}] = \frac{1}{4} \mathbb{E} [\|T^{*} - \theta + T - \theta\|^{2}]$$

$$= \frac{1}{4} (\mathbb{E} [\|T^{*} - \theta\|^{2}] + \mathbb{E} [\|T - \theta\|^{2}] + 2\mathbb{E} [\langle T^{*} - \theta, T - \theta \rangle])$$

$$\frac{1}{2} (R_{min} + \mathbb{E} [\langle T^{*} - \theta, T - \theta \rangle]).$$

Comme $\mathbb{E}\left[\|T'-\theta\|^2\right] \geq R_{min}$ par définition du risque minimal, on doit avoir

$$\mathbb{E}\left[\left\langle T^* - \theta, T - \theta\right\rangle\right] \ge R_{min}.$$

D'autre part, en appliquant deux fois l'inégalité de Cauchy-Schwarz, on a

$$\mathbb{E}\left[\left\langle T^* - \theta \,,\, T - \theta \right\rangle\right] \leq \mathbb{E}\left[\left\|T^* - \theta\right\| \cdot \left\|T - \theta\right\|\right] \leq \sqrt{\mathbb{E}\left[\left\|T^* - \theta\right\|^2\right] \mathbb{E}\left[\left\|T - \theta\right\|^2\right]} = R_{\min} \,.$$

On en déduit que

$$\mathbb{E}\left[\|T^* - \theta\| \cdot \|T - \theta\| - \langle T^* - \theta, T - \theta \rangle\right] = 0.$$

Comme cette variable est positive, on obtient $\langle T^* - \theta , T - \theta \rangle = ||T^* - \theta|| \cdot ||T - \theta||$ p.s. Il existe donc $\lambda > 0$ tel que $T^* - \theta = \lambda(T - \lambda)$ p.s. Mais comme les risque de T^* et de T sont les mêmes, $\lambda = 1$ et $T^* = T$ p.s.

Montrons maintenant que l'estimateur $\theta^*(X) = \mathbb{E}\left[\widehat{\theta}(X) \mid T(X)\right]$, avec $\widehat{\theta}(X)$ un estimateur sans biais et T(X) une statistique exhaustive et complète, est de risque minimal (il est clairement sans biais puisque $\mathbb{E}[\theta^*(X)] = \mathbb{E}[\widehat{\theta}(X)] = \theta$). Soit T'(X) un estimateur sans biais de θ . On a

$$\begin{split} \mathbb{E}\left[\|T'(X) - \theta\|^2\right] &= \mathbb{E}\left[\|T'(X) - \theta^*(X)\|^2\right] + \mathbb{E}\left[\|\theta^*(X) - \theta\|^2\right] + 2\mathbb{E}\left[\langle T'(X) - \theta^*(X), \theta^*(X) - \theta\rangle\right] \\ &= \mathbb{E}\left[\|T'(X) - \theta^*(X)\|^2\right] + \mathbb{E}\left[\|\theta^*(X) - \theta\|^2\right] \\ &+ 2\mathbb{E}\left[\langle \mathbb{E}[T'(X) \mid T(X)] - \mathbb{E}[\widehat{\theta}(X) \mid T(X)], \mathbb{E}[\widehat{\theta}(X) \mid T(X)] - \theta\rangle\right]. \end{split}$$

Notons $g(T(X)) = \mathbb{E}[T'(X) \mid T(X)] - \mathbb{E}[\widehat{\theta}(X) \mid T(X)]$. Comme T' et $\widehat{\theta}$ sont sans biais, on a, pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[g(T(X))] = 0$. Ainsi, comme T est complète, pur tout $\theta \in \Theta$, $\mathbb{P}_{\theta}(g(T(X)) = 0) = 1$. Donc l'espérance du produit scalaire est nulle et $\mathbb{E}[\|T'(X) - \theta\|^2] \ge \mathbb{E}[\|\theta^*(X) - \theta\|^2]$, ce qu'il fallait démontrer.

(c) La statistique est exhaustive et complète, donc, comme W est sans biais, $\mathbb{E}[W \mid S_n] = \left(1 - \frac{1}{n}\right)^{S_n}$ est l'unique estimateur sans biais de variance minimale. On a

$$\mathbb{E}\left[\mathbb{E}[W\mid S_n]^2\right] = \sum_{k>0} \frac{e^{-\lambda n}(\lambda n)^k}{k!} \left(1 - \frac{1}{n}\right)^2 k = e^{-\lambda n + \lambda n\left(1 - \frac{1}{n}\right)^2} = e^{-\lambda\left(2 - \frac{1}{n}\right)}.$$

Ainsi le risque minimal d'un estimateur vaut $e^{-\lambda\left(2-\frac{1}{n}\right)}-e^{-2\lambda}=e^{-2\lambda}\left(e^{\lambda/n}-1\right)$.