
5 Kernel Methods

Kernel methods are widely used in machine learning. They are flexible techniques
that can be used to extend algorithms such as SVMs to define non-linear decision
boundaries. Other algorithms that only depend on inner products between sample
points can be extended similarly, many of which will be studied in future chapters.

The main idea behind these methods is based on so-called kernels or kernel func-
tions, which, under some technical conditions of symmetry and positive-definiteness,
implicitly define an inner product in a high-dimensional space. Replacing the orig-
inal inner product in the input space with positive definite kernels immediately
extends algorithms such as SVMs to a linear separation in that high-dimensional
space, or, equivalently, to a non-linear separation in the input space.

In this chapter, we present the main definitions and key properties of positive
definite symmetric kernels, including the proof of the fact that they define an inner
product in a Hilbert space, as well as their closure properties. We then extend the
SVM algorithm using these kernels and present several theoretical results including
general margin-based learning guarantees for hypothesis sets based on kernels. We
also introduce negative definite symmetric kernels and point out their relevance to
the construction of positive definite kernels, in particular from distances or metrics.
Finally, we illustrate the design of kernels for non-vectorial discrete structures by
introducing a general family of kernels for sequences, rational kernels. We describe
an efficient algorithm for the computation of these kernels and illustrate them with
several examples.

5.1 Introduction

In the previous chapter, we presented an algorithm for linear classification, SVMs,
which is both effective in applications and benefits from a strong theoretical justi-
fication. In practice, linear separation is often not possible. Figure 5.1a shows an
example where any hyperplane crosses both populations. However, one can use more
complex functions to separate the two sets as in figure 5.1b. One way to define such
a non-linear decision boundary is to use a non-linear mapping Φ from the input
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(a) (b)

Figure 5.1 Non-linearly separable case. The classification task consists of discrim-
inating between solid squares and solid circles. (a) No hyperplane can separate the
two populations. (b) A non-linear mapping can be used instead.

space X to a higher-dimensional space H, where linear separation is possible.
The dimension of H can truly be very large in practice. For example, in the

case of document classification, one may wish to use as features sequences of three
consecutive words, i.e., trigrams. Thus, with a vocabulary of just 100,000 words,
the dimension of the feature space H reaches 1015. On the positive side, the margin
bounds presented in section 4.4 show that, remarkably, the generalization ability of
large-margin classification algorithms such as SVMs do not depend on the dimension
of the feature space, but only on the margin ρ and the number of training examples
m. Thus, with a favorable margin ρ, such algorithms could succeed even in very high-
dimensional space. However, determining the hyperplane solution requires multiple
inner product computations in high-dimensional spaces, which can become be very
costly.

A solution to this problem is to use kernel methods, which are based on kernels
or kernel functions.

Definition 5.1 Kernels
A function K : X × X → R is called a kernel over X .

The idea is to define a kernel K such that for any two points x, x′ ∈ X , K(x, x′) be
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equal to an inner product of vectors Φ(x) and Φ(y):1

∀x, x′ ∈ X , K(x, x′) = 〈Φ(x), Φ(x′)〉 , (5.1)

for some mapping Φ : X → H to a Hilbert space H called a feature space. Since an
inner product is a measure of the similarity of two vectors, K is often interpreted
as a similarity measure between elements of the input space X .

An important advantage of such a kernel K is efficiency: K is often significantly
more efficient to compute than Φ and an inner product in H. We will see several
common examples where the computation of K(x, x′) can be achieved in O(N)
while that of 〈Φ(x), Φ(x′)〉 typically requires O(dim(H)) work, with dim(H) ' N .
Furthermore, in some cases, the dimension of H is infinite.

Perhaps an even more crucial benefit of such a kernel function K is flexibility:
there is no need to explicitly define or compute a mapping Φ. The kernel K can
be arbitrarily chosen so long as the existence of Φ is guaranteed, i.e. K satisfies
Mercer’s condition (see theorem 5.1).

Theorem 5.1 Mercer’s condition
Let X ⊂ RN be a compact set and let K : X×X → R be a continuous and symmetric
function. Then, K admits a uniformly convergent expansion of the form

K(x, x′) =
∞∑

n=0

anφn(x)φn(x′),

with an > 0 iff for any square integrable function c (c ∈ L2(X )), the following
condition holds:

∫ ∫

X×X
c(x)c(x′)K(x, x′)dxdx′ ≥ 0.

This condition is important to guarantee the convexity of the optimization problem
for algorithms such as SVMs and thus convergence guarantees. A condition that
is equivalent to Mercer’s condition under the assumptions of the theorem is that
the kernel K be positive definite symmetric (PDS). This property is in fact more
general since in particular it does not require any assumption about X . In the next
section, we give the definition of this property and present several commonly used
examples of PDS kernels, then show that PDS kernels induce an inner product in
a Hilbert space, and prove several general closure properties for PDS kernels.

1. To differentiate that inner product from the one of the input space, we will typically
denote it by 〈·, ·〉.
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5.2 Positive definite symmetric kernels

5.2.1 Definitions

Definition 5.2 Positive definite symmetric kernels
A kernel K : X × X → R is said to be positive definite symmetric (PDS) if for
any {x1, . . . , xm} ⊆ X , the matrix K = [K(xi, xj)]ij ∈ Rm×m is symmetric positive
semidefinite (SPSD).

K is SPSD if it is symmetric and one of the following two equivalent conditions
holds:

the eigenvalues of K are non-negative;
for any column vector c = (c1, . . . , cm)$ ∈ Rm×1,

c$Kc =
n∑

i,j=1

cicjK(xi, xj) ≥ 0. (5.2)

For a sample S = (x1, . . . , xm), K = [K(xi, xj)]ij ∈ Rm×m is called the kernel
matrix or the Gram matrix associated to K and the sample S.

Let us insist on the terminology: the kernel matrix associated to a positive definite
kernel is positive semidefinite . This is the correct mathematical terminology.
Nevertheless, the reader should be aware that in the context of machine learning,
some authors have chosen to use instead the term positive definite kernel to imply
a positive definite kernel matrix or used new terms such as positive semidefinite
kernel .

The following are some standard examples of PDS kernels commonly used in
applications.

Example 5.1 Polynomial kernels
For any constant c > 0, a polynomial kernel of degree d ∈ N is the kernel K defined
over RN by:

∀x,x′ ∈ RN , K(x,x′) = (x · x′ + c)d. (5.3)

Polynomial kernels map the input space to a higher-dimensional space of dimension(N+d
d

)
(see exercise 5.9). As an example, for an input space of dimension N = 2,

a second-degree polynomial (d = 2) corresponds to the following inner product in
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Figure 5.2 Illustration of the XOR classification problem and the use of poly-
nomial kernels. (a) XOR problem linearly non-separable in the input space. (b)
Linearly separable using second-degree polynomial kernel.

dimension 6:

∀x,x′ ∈ R2, K(x,x′) = (x1x
′
1 + x2x

′
2 + c)2 =





x2
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. (5.4)

Thus, the features corresponding to a second-degree polynomial are the original
features (x1 and x2), as well as products of these features, and the constant feature.
More generally, the features associated to a polynomial kernel of degree d are all
the monomials of degree at most d based on the original features. The explicit
expression of polynomial kernels as inner products, as in (5.4), proves directly that
they are PDS kernels.

To illustrate the application of polynomial kernels, consider the example of fig-
ure 5.2a which shows a simple data set in dimension two that is not linearly sepa-
rable. This is known as the XOR problem due to its interpretation in terms of the
exclusive OR (XOR) function: the label of a point is blue iff exactly one of its coor-
dinates is 1. However, if we map these points to the six-dimensional space defined
by a second-degree polynomial as described in (5.4), then the problem becomes
separable by the hyperplane of equation x1x2 = 0. Figure 5.2b illustrates that by
showing the projection of these points on the two-dimensional space defined by their
third and fourth coordinates.

Example 5.2 Gaussian kernels
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For any constant σ > 0, a Gaussian kernel or radial basis function (RBF) is the
kernel K defined over RN by:

∀x,x′ ∈ RN , K(x,x′) = exp
(
−‖x′ − x‖2

2σ2

)
. (5.5)

Gaussians kernels are among the most frequently used kernels in applications. We
will prove in section 5.2.3 that they are PDS kernels and that they can be derived
by normalization from the kernels K ′ : (x,x′) .→ exp

(
x·x′

σ2

)
. Using the power series

expansion of the function exponential, we can rewrite the expression of K ′ as follows:

∀x,x′ ∈ RN , K ′(x,x′) =
+∞∑

n=0

(x · x′)n

σn n!
,

which shows that the kernels K ′, and thus Gaussian kernels, are positive linear
combinations of polynomial kernels of all degrees n ≥ 0.

Example 5.3 Sigmoid kernels
For any real constants a, b ≥ 0, a sigmoid kernel is the kernel K defined over RN

by:

∀x,x′ ∈ RN , K(x,x′) = tanh
(
a(x · x′) + b

)
. (5.6)

Using sigmoid kernels with SVMs leads to an algorithm that is closely related to
learning algorithms based on simple neural networks, which are also often defined
via a sigmoid function. When a < 0 or b < 0, the kernel is not PDS and the
corresponding neural network does not benefit from the convergence guarantees of
convex optimization (see exercise 5.15).

5.2.2 Reproducing kernel Hilbert space

Here, we prove the crucial property of PDS kernels, which is to induce an inner
product in a Hilbert space. The proof will make use of the following lemma.

Lemma 5.1 Cauchy-Schwarz inequality for PDS kernels
Let K be a PDS kernel. Then, for any x, x′ ∈ X ,

K(x, x′)2 ≤ K(x, x)K(x′, x′). (5.7)

Proof Consider the matrix K =
(

K(x,x) K(x,x′)
K(x′,x) K(x′,x′)

)
. By definition, if K is PDS,

then K is SPSD for all x, x′ ∈ X . In particular, the product of the eigenvalues of
K, det(K), must be non-negative, thus, using K(x′, x) = K(x, x′), we have

det(K) = K(x, x)K(x′, x′) − K(x, x′)2 ≥ 0,
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which concludes the proof.

The following is the main result of this section.

Theorem 5.2 Reproducing kernel Hilbert space (RKHS)
Let K : X × X → R be a PDS kernel. Then, there exists a Hilbert space H and a
mapping Φ from X to H such that:

∀x, x′ ∈ X , K(x, x′) = 〈Φ(x), Φ(x′)〉 . (5.8)

Furthermore, H has the following property known as the reproducing property:

∀h ∈ H,∀x ∈ X , h(x) = 〈h, K(x, ·)〉 . (5.9)

H is called a reproducing kernel Hilbert space (RKHS) associated to K.

Proof For any x ∈ X , define Φ(x) : X → R as follows:

∀x′ ∈ X , Φ(x)(x′) = K(x, x′).

We define H0 as the set of finite linear combinations of such functions Φ(x):

H0 =
{ ∑

i∈I

aiΦ(xi) : ai ∈ R, xi ∈ X , card(I) < ∞
}

.

Now, we introduce an operation 〈·, ·〉 on H0 × H0 defined for all f, g ∈ H0 with
f =

∑
i∈I aiΦ(xi) and g =

∑
j∈J bjΦ(xj) by

〈f, g〉 =
∑

i∈I,j∈J

aibjK(xi, x
′
j) =

∑

j∈J

bjf(x′
j) =

∑

i∈I

aig(xi).

By definition, 〈·, ·〉 is symmetric. The last two equations show that 〈f, g〉 does not
depend on the particular representations of f and g, and also show that 〈·, ·〉 is
bilinear. Further, for any f =

∑
i∈I aiΦ(xi) ∈ H0, since K is PDS, we have

〈f, f〉 =
∑

i,j∈I

aiajK(xi, xj) ≥ 0.

Thus, 〈·, ·〉 is positive semidefinite bilinear form. This inequality implies more
generally using the bilinearity of 〈·, ·〉 that for any f1, . . . , fm and c1, . . . , cm ∈ R,

m∑

i,j=1

cicj〈fi, fj〉 =
〈 m∑

i=1

cifi,
m∑

j=1

cjfj

〉
≥ 0.

Hence, 〈·, ·〉 is a PDS kernel on H0. Thus, for any f ∈ H0 and any x ∈ X , by
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lemma 5.1, we can write

〈f,Φ(x)〉2 ≤ 〈f, f〉〈Φ(x), Φ(x)〉.

Further, we observe the reproducing property of 〈·, ·〉: for any f =
∑

i∈I aiΦ(xi) ∈
H0, by definition of 〈·, ·〉,

∀x ∈ X , f(x) =
∑

i∈I

aiK(xi, x) = 〈f,Φ(x)〉 . (5.10)

Thus, [f(x)]2 ≤ 〈f, f〉K(x, x) for all x ∈ X , which shows the definiteness of 〈·, ·〉.
This implies that 〈·, ·〉 defines an inner product on H0, which thereby becomes a
pre-Hilbert space. H0 can be completed to form a Hilbert space H in which it is
dense, following a standard construction. By the Cauchy-Schwarz inequality , for
any x ∈ X , f .→ 〈f,Φ(x)〉 is Lipschitz, therefore continuous. Thus, since H0 is dense
in H, the reproducing property (5.10) also holds over H.

The Hilbert space H defined in the proof of the theorem for a PDS kernel K is called
the reproducing kernel Hilbert space (RKHS) associated to K. Any Hilbert space H
such that there exists Φ : X → H with K(x, x′) = 〈Φ(x), Φ(x′)〉 for all x, x′ ∈ X
is called a feature space associated to K and Φ is called a feature mapping . We
will denote by ‖ · ‖H the norm induced by the inner product in feature space H:
‖w‖H =

√
〈w,w〉 for all w ∈ H. Note that the feature spaces associated to K are in

general not unique and may have different dimensions. In practice, when referring to
the dimension of the feature space associated to K, we either refer to the dimension
of the feature space based on a feature mapping described explicitly, or to that of
the RKHS associated to K.

Theorem 5.2 implies that PDS kernels can be used to implicitly define a feature
space or feature vectors. As already underlined in previous chapters, the role played
by the features in the success of learning algorithms is crucial: with poor features,
uncorrelated with the target labels, learning could become very challenging or
even impossible; in contrast, good features could provide invaluable clues to the
algorithm. Therefore, in the context of learning with PDS kernels and for a fixed
input space, the problem of seeking useful features is replaced by that of finding
useful PDS kernels. While features represented the user’s prior knowledge about the
task in the standard learning problems, here PDS kernels will play this role. Thus,
in practice, an appropriate choice of PDS kernel for a task will be crucial.

5.2.3 Properties

This section highlights several important properties of PDS kernels. We first show
that PDS kernels can be normalized and that the resulting normalized kernels are
also PDS. We also introduce the definition of empirical kernel maps and describe
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their properties and extension. We then prove several important closure properties
of PDS kernels, which can be used to construct complex PDS kernels from simpler
ones.

To any kernel K, we can associate a normalized kernel K ′ defined by

∀x, x′ ∈ X , K ′(x, x′) =





0 if (K(x, x) = 0) ∧ (K(x′, x′) = 0)

K(x,x′)√
K(x,x)K(x′,x′)

otherwise.

(5.11)
By definition, for a normalized kernel K ′, K ′(x, x) = 1 for all x ∈ X such that
K(x, x) 2= 0. An example of normalized kernel is the Gaussian kernel with parameter
σ > 0, which is the normalized kernel associated to K ′ : (x,x′) .→ exp

(
x·x′

σ2

)
:

∀x,x′ ∈ RN ,
K ′(x,x′)√

K ′(x,x)K ′(x′,x′)
=

e
x·x′
σ2

e
‖x‖2

2σ2 e
‖x′‖2

2σ2

= exp
(
−‖x′ − x′‖2

2σ2

)
. (5.12)

Lemma 5.2 Normalized PDS kernels
Let K be a PDS kernel. Then, the normalized kernel K ′ associated to K is PDS.

Proof Let {x1, . . . , xm} ⊆ X and let c be an arbitrary vector in Rm. We will show
that the sum

∑m
i,j=1 cicjK ′(xi, xj) is non-negative. By lemma 5.1, if K(xi, xi) = 0

then K(xi, xj) = 0 and thus K ′(xi, xj) = 0 for all j ∈ [1,m]. Thus, we can assume
that K(xi, xi) > 0 for all i ∈ [1,m]. Then, the sum can be rewritten as follows:

m∑

i,j=1

cicjK(xi, xj)√
K(xi, xi)K(xj , xj)

=
m∑

i,j=1

cicj 〈Φ(xi), Φ(xj)〉
‖Φ(xi)‖H ‖Φ(xj)‖H

=

∥∥∥∥∥

m∑

i=1

ciΦ(xi)
‖Φ(xi)‖H

∥∥∥∥∥

2

H
≥ 0,

where Φ is a feature mapping associated to K, which exists by theorem 5.2.

As indicated earlier, PDS kernels can be interpreted as a similarity measure since
they induce an inner product in some Hilbert space H. This is more evident for a
normalized kernel K since K(x, x′) is then exactly the cosine of the angle between
the feature vectors Φ(x) and Φ(x′), provided that none of them is zero: Φ(x) and
Φ(x′) are then unit vectors since ‖Φ(x)‖H = ‖Φ(x′)‖H =

√
K(x, x) = 1.

While one of the advantages of PDS kernels is an implicit definition of a feature
mapping, in some instances, it may be desirable to define an explicit feature
mapping based on a PDS kernel. This may be to work in the primal for various
optimization and computational reasons, to derive an approximation based on an
explicit mapping, or as part of a theoretical analysis where an explicit mapping
is more convenient. The empirical kernel map Φ associated to a PDS kernel K is
a feature mapping that can be used precisely in such contexts. Given a training
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sample containing points x1, . . . , xm ∈ X , Φ : X → Rm is defined for all x ∈ X by

Φ(x) =





K(x, x1)
...

K(x, xm)



 .

Thus, Φ(x) is the vector of the K-similarity measures of x with each of the training
points. Let K be the kernel matrix associated to K and ei the ith unit vector.
Note that for any i ∈ [1,m], Φ(xi) is the ith column of K, that is Φ(xi) = Kei. In
particular, for all i, j ∈ [1,m],

〈Φ(xi), Φ(xj)〉 = (Kei)$(Kej) = e$i K2ej .

Thus, the kernel matrix K′ associated to Φ is K2. It may desirable in some cases
to define a feature mapping whose kernel matrix coincides with K. Let K†

1
2 denote

the SPSD matrix whose square is K†, the pseudo-inverse of K. K†
1
2 can be derived

from K† via singular value decomposition and if the matrix K is invertible, K†
1
2

coincides with K−1/2 (see appendix A for properties of the pseudo-inverse). Then,
Ψ can be defined as follows using the empirical kernel map Φ:

∀x ∈ X , Ψ(x) = K†
1
2 Φ(x).

Using the identity KK†K = K valid for any symmetric matrix K, for all i, j ∈ [1,m],
the following holds:

〈Ψ(xi), Ψ(xj)〉 = (K†
1
2 Kei)$(K†

1
2 Kej) = e$i KK†Kej = e$i Kej .

Thus, the kernel matrix associated to Ψ is K. Finally, note that for the feature
mapping Ω : X → Rm defined by

∀x ∈ X , Ω(x) = K†Φ(x),

for all i, j ∈ [1,m], we have 〈Ω(xi), Ω(xj)〉 = e$i KK†K†Kej = e$i KK†ej , using the
identity K†K†K = K† valid for any symmetric matrix K. Thus, the kernel matrix
associated to Ω is KK†, which reduces to the identity matrix I ∈ Rm×m when K is
invertible, since K† = K−1 in that case.

As pointed out in the previous section, kernels represent the user’s prior knowl-
edge about a task. In some cases, a user may come up with appropriate similarity
measures or PDS kernels for some subtasks — for example, for different subcat-
egories of proteins or text documents to classify. But how can he combine these
PDS kernels to form a PDS kernel for the entire class? Is the resulting combined
kernel guaranteed to be PDS? In the following, we will show that PDS kernels are
closed under several useful operations which can be used to design complex PDS
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kernels. These operations are the sum and the product of kernels, as well as the
tensor product of two kernels K and K ′, denoted by K ⊗ K ′ and defined by

∀x1, x2, x
′
1, x

′
2 ∈ X , (K ⊗ K ′)(x1, x

′
1, x2, x

′
2) = K(x1, x2)K ′(x′

1, x
′
2).

They also include the pointwise limit: given a sequence of kernels (Kn)n∈N such that
for all x, x′ ∈ X (Kn(x, x′))n∈N admits a limit, the pointwise limit of (Kn)n∈N is
the kernel K defined for all x, x′ ∈ X by K(x, x′) = limn→+∞(Kn)(x, x′). Similarly,
if

∑∞
n=0 anxn is a power series with radius of convergence ρ > 0 and K a kernel

taking values in (−ρ, +ρ), then
∑∞

n=0 anKn is the kernel obtained by composition
of K with that power series. The following theorem provides closure guarantees for
all of these operations.

Theorem 5.3 PDS kernels — closure properties
PDS kernels are closed under sum, product, tensor product, pointwise limit, and
composition with a power series

∑∞
n=0 anxn with an ≥ 0 for all n ∈ N.

Proof We start with two kernel matrices, K and K′, generated from PDS kernels
K and K ′ for an arbitrary set of m points. By assumption, these kernel matrices
are SPSD. Observe that for any c ∈ Rm×1,

(c$Kc ≥ 0) ∧ (c$K′c ≥ 0) ⇒ c$(K + K′)c ≥ 0.

By (5.2), this shows that K + K′ is SPSD and thus that K + K ′ is PDS. To show
closure under product, we will use the fact that for any SPSD matrix K there exists
M such that K = MM$. The existence of M is guaranteed as it can be generated
via, for instance, singular value decomposition of K, or by Cholesky decomposition.
The kernel matrix associated to KK ′ is (KijK′

ij)ij . For any c ∈ Rm×1, expressing
Kij in terms of the entries of M, we can write

m∑

i,j=1

cicj(KijK′
ij) =

m∑

i,j=1

cicj

([ m∑

k=1

MikMjk

]
K′

ij

)

=
m∑

k=1

[ m∑

i,j=1

cicjMikMjkK′
ij

]

=
m∑

k=1

z$k K′zk ≥ 0,

with zk =
[

c1M1k...
cmMmk

]
. This shows that PDS kernels are closed under product.

The tensor product of K and K ′ is PDS as the product of the two PDS kernels
(x1, x′

1, x2, x′
2) .→ K(x1, x2) and (x1, x′

1, x2, x′
2) .→ K ′(y1, y2). Next, let (Kn)n∈N

be a sequence of PDS kernels with pointwise limit K. Let K be the kernel matrix



100 Kernel Methods

associated to K and Kn the one associated to Kn for any n ∈ N. Observe that

(∀n, c$Knc ≥ 0) ⇒ lim
n→∞

c$Knc = c$Kc ≥ 0.

This shows the closure under pointwise limit. Finally, assume that K is a PDS
kernel with |K(x, x′)| < ρ for all x, x′ ∈ X and let f : x .→

∑∞
n=0 anxn, an ≥ 0 be a

power series with radius of convergence ρ. Then, for any n ∈ N, Kn and thus anKn

are PDS by closure under product. For any N ∈ N,
∑N

n=0 anKn is PDS by closure
under sum of anKns and f ◦ K is PDS by closure under the limit of

∑N
n=0 anKn

as N tends to infinity.

The theorem implies in particular that for any PDS kernel matrix K, exp(K) is
PDS, since the radius of convergence of exp is infinite. In particular, the kernel
K ′ : (x,x′) .→ exp

(
x·x′

σ2

)
is PDS since (x,x′) .→ x·x′

σ2 is PDS. Thus, by lemma 5.2,
this shows that a Gaussian kernel, which is the normalized kernel associated to K ′,
is PDS.

5.3 Kernel-based algorithms

In this section we discuss how SVMs can be used with kernels and analyze the
impact that kernels have on generalization.

5.3.1 SVMs with PDS kernels

In chapter 4, we noted that the dual optimization problem for SVMs as well as the
form of the solution did not directly depend on the input vectors but only on inner
products. Since a PDS kernel implicitly defines an inner product (theorem 5.2), we
can extend SVMs and combine it with an arbitrary PDS kernel K by replacing each
instance of an inner product x ·x′ with K(x, x′). This leads to the following general
form of the SVM optimization problem and solution with PDS kernels extending
(4.32):

max
α

m∑

i=1

αi −
1
2

m∑

i,j=1

αiαjyiyjK(xi, xj) (5.13)

subject to: 0 ≤ αi ≤ C ∧
m∑

i=1

αiyi = 0, i ∈ [1,m].

In view of (4.33), the hypothesis h solution can be written as:

h(x) = sgn
( m∑

i=1

αiyiK(xi, x) + b
)
, (5.14)
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with b = yi −
∑m

j=1 αjyjK(xj , xi) for any xi with 0 < αi < C. We can rewrite
the optimization problem (5.13) in a vector form, by using the kernel matrix K
associated to K for the training sample (x1, . . . , xm) as follows:

max
α

2 1$α − (α ◦ y)$K(α ◦ y) (5.15)

subject to: 0 ≤ α ≤ C ∧ α$y = 0.

In this formulation, α ◦ y is the Hadamard product or entry-wise product of the
vectors α and y. Thus, it is the column vector in Rm×1 whose ith component
equals αiyi. The solution in vector form is the same as in (5.14), but with b =
yi − (α ◦ y)$Kei for any xi with 0 < αi < C.

This version of SVMs used with PDS kernels is the general form of SVMs we
will consider in all that follows. The extension is important, since it enables an
implicit non-linear mapping of the input points to a high-dimensional space where
large-margin separation is sought.

Many other algorithms in areas including regression, ranking, dimensionality
reduction or clustering can be extended using PDS kernels following the same
scheme (see in particular chapters 8, 9, 10, 12).

5.3.2 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written
as a linear combination of the functions K(xi, ·), where xi is a sample point. The
following theorem known as the representer theorem shows that this is in fact a
general property that holds for a broad class of optimization problems, including
that of SVMs with no offset.

Theorem 5.4 Representer theorem
Let K : X ×X → R be a PDS kernel and H its corresponding RKHS. Then, for any
non-decreasing function G : R → R and any loss function L : Rm → R∪ {+∞}, the
optimization problem

argmin
h∈H

F (h) = argmin
h∈H

G(‖h‖H) + L
(
h(x1), . . . , h(xm)

)

admits a solution of the form h∗ =
∑m

i=1 αiK(xi, ·). If G is further assumed to be
increasing, then any solution has this form.

Proof Let H1 = span({K(xi, ·) : i ∈ [1,m]}). Any h ∈ H admits the decomposition
h = h1 + h⊥ according to H = H1 ⊕ H⊥

1 , where ⊕ is the direct sum. Since G is
non-decreasing, G(‖h1‖H) ≤ G(

√
‖h1‖2

H + ‖h⊥‖2
H) = G(‖h‖H). By the reproducing

property, for all i ∈ [1,m], h(xi) = 〈h, K(xi, ·)〉 = 〈h1,K(xi, ·)〉 = h1(xi). Thus,
L

(
h(x1), . . . , h(xm)

)
= L

(
h1(x1), . . . , h1(xm)

)
and F (h1) ≤ F (h). This proves the
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first part of the theorem. If G is further increasing, then F (h1) < F (h) when
‖h⊥‖H > 0 and any solution of the optimization problem must be in H1.

5.3.3 Learning guarantees

Here, we present general learning guarantees for hypothesis sets based on PDS
kernels, which hold in particular for SVMs combined with PDS kernels.

The following theorem gives a general bound on the empirical Rademacher
complexity of kernel-based hypotheses with bounded norm, that is a hypothesis
set of the form H = {h ∈ H : ‖h‖H ≤ Λ}, for some Λ ≥ 0, where H is the
RKHS associated to a kernel K. By the reproducing property, any h ∈ H is of
the form x .→ 〈h, K(x, ·)〉 = 〈h, Φ(x)〉 with ‖h‖H ≤ Λ, where Φ is a feature mapping
associated to K, that is of the form x .→ 〈w, Φ(x)〉 with ‖w‖H ≤ Λ.

Theorem 5.5 Rademacher complexity of kernel-based hypotheses
Let K : X × X → R be a PDS kernel and let Φ : X → H be a feature mapping
associated to K. Let S ⊆ {x : K(x, x) ≤ r2} be a sample of size m, and let
H = {x .→ w · Φ(x) : ‖w‖H ≤ Λ} for some Λ ≥ 0. Then

R̂S(H) ≤
Λ

√
Tr[K]
m

≤
√

r2Λ2

m
. (5.16)

Proof The proof steps are as follows:

R̂S(H) =
1
m

E
σ

[
sup

‖w‖≤Λ

〈
w,

m∑

i=1

σiΦ(xi)
〉]

=
Λ
m

E
σ

[∥∥∥
m∑

i=1

σiΦ(xi)
∥∥∥

H

]
(Cauchy-Schwarz , eq. case)

≤ Λ
m

[
E
σ

[∥∥∥
m∑

i=1

σiΦ(xi)
∥∥∥

2

H

]]1/2

(Jensen’s ineq.)

=
Λ
m

[
E
σ

[ m∑

i=1

‖Φ(xi)‖2
H
]]1/2

(i 2= j ⇒ E
σ
[σiσj ] = 0)

=
Λ
m

[
E
σ

[ m∑

i=1

K(xi, xi)
]]1/2

=
Λ

√
Tr[K]
m

≤
√

r2Λ2

m
.

The initial equality holds by definition of the empirical Rademacher complexity
(definition 3.2). The first inequality is due to the Cauchy-Schwarz inequality and
‖w‖H ≤ Λ. The following inequality results from Jensen’s inequality (theorem B.4)
applied to the concave function

√
·. The subsequent equality is a consequence of
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Eσ[σiσj ] = Eσ[σi] Eσ[σj ] = 0 for i 2= j, since the Rademacher variables σi and
σj are independent. The statement of the theorem then follows by noting that
Tr[K] ≤ mr2.

The theorem indicates that the trace of the kernel matrix is an important quantity
for controlling the complexity of hypothesis sets based on kernels. Observe that
by the Khintchine-Kahane inequality (D.22), the empirical Rademacher complexity
R̂S(H) = Λ

m Eσ[‖
∑m

i=1 σiΦ(xi)‖H] can also be lower bounded by 1√
2

Λ
√

Tr[K]

m , which
only differs from the upper bound found by the constant 1√

2
. Also, note that if

K(x, x) ≤ r2 for all x ∈ X , then the inequalities 5.16 hold for all samples S.
The bound of theorem 5.5 or the inequalities 5.16 can be plugged into any of the

Rademacher complexity generalization bounds presented in the previous chapters.
In particular, in combination with theorem 4.4, they lead directly to the following
margin bound similar to that of corollary 4.1.

Corollary 5.1 Margin bounds for kernel-based hypotheses
Let K : X × X → R be a PDS kernel with r = supx∈X K(x, x). Let Φ : X → H be a
feature mapping associated to K and let H = {x .→ w · Φ(x) : ‖w‖H ≤ Λ} for some
Λ ≥ 0. Fix ρ > 0. Then, for any δ > 0, each of the following statements holds with
probability at least 1 − δ for any h ∈ H:

R(h) ≤ R̂ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
(5.17)

R(h) ≤ R̂ρ(h) + 2
√

Tr[K]Λ2/ρ2

m
+ 3

√
log 2

δ

2m
. (5.18)

5.4 Negative definite symmetric kernels

Often in practice, a natural distance or metric is available for the learning task
considered. This metric could be used to define a similarity measure. As an example,
Gaussian kernels have the form exp(−d2), where d is a metric for the input vector
space. Several natural questions arise such as: what other PDS kernels can we
construct from a metric in a Hilbert space? What technical condition should d
satisfy to guarantee that exp(−d2) is PDS? A natural mathematical definition that
helps address these questions is that of negative definite symmetric (NDS) kernels.

Definition 5.3 Negative definite symmetric (NDS) kernels
A kernel K : X × X → R is said to be negative-definite symmetric (NDS) if it
is symmetric and if for all {x1, . . . , xm} ⊆ X and c ∈ Rm×1 with 1$c = 0, the
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following holds:

c$Kc ≤ 0.

Clearly, if K is PDS, then −K is NDS, but the converse does not hold in general.
The following gives a standard example of an NDS kernel.

Example 5.4 Squared distance — NDS kernel
The squared distance (x, x′) .→ ‖x′ − x‖2 in RN defines an NDS kernel. Indeed, let
c ∈ Rm×1 with

∑m
i=1 ci = 0. Then, for any {x1, . . . , xm} ⊆ X , we can write

m∑

i,j=1

cicj ||xi − xj ||2 =
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2 − 2xi · xj)

=
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2) − 2
m∑

i=1

cixi ·
m∑

j=1

cjxj

=
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2) − 2
∥∥

m∑

i=1

cixi

∥∥2

≤
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2)

=
( m∑

j=1

cj

)( m∑

i=1

ci(‖xi‖2
)

+
( m∑

i=1

ci

)( m∑

j=1

cj‖xj‖2
)

= 0.

The next theorems show connections between NDS and PDS kernels. These
results provide another series of tools for designing PDS kernels.

Theorem 5.6
Let K ′ be defined for any x0 by

K ′(x, x′) = K(x, x0) + K(x′, x0) − K(x, x′) − K(x0, x0)

for all x, x′ ∈ X . Then K is NDS iff K ′ is PDS.

Proof Assume that K ′ is PDS and define K such that for any x0 we have
K(x, x′) = K(x, x0) + K(x0, x′) − K(x0, x0) − K ′(x, x′). Then for any c ∈ Rm

such that c$1 = 0 and any set of points (x1, . . . , xm) ∈ Xm we have

m∑

i,j=1

cicjK(xi, xj) =
( m∑

i=1

ciK(xi, x0)
)( m∑

j=1

cj

)
+

( m∑

i=1

ci

)( m∑

j=1

cjK(x0, xj)
)

−
( m∑

i=1

ci

)2
K(x0, x0) −

m∑

i,j=1

cicjK
′(xi, xj) = −

m∑

i,j=1

cicjK
′(xi, xj) ≤ 0 .
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which proves K is NDS.
Now, assume K is NDS and define K ′ for any x0 as above. Then, for any c ∈ Rm,

we can define c0 = −c$1 and the following holds by the NDS property for any points
(x1, . . . , xm) ∈ Xm as well as x0 defined previously:

∑m
i,j=0 cicjK(xi, xj) ≤ 0. This

implies that

( m∑

i=0

ciK(xi, x0)
)( m∑

j=0

cj

)
+

( m∑

i=0

ci

)( m∑

j=0

cjK(x0, xj)
)

−
( m∑

i=0

ci

)2
K(x0, x0) −

m∑

i,j=0

cicjK
′(xi, xj) = −

m∑

i,j=0

cicjK
′(xi, xj) ≤ 0 ,

which implies 2
∑m

i,j=1 cicjK ′(xi, xj) ≥ −2c0
∑m

i=0 ciK ′(xi, x0) + c2
0K

′(x0, x0) = 0.
The equality holds since ∀x ∈ X ,K ′(x, x0) = 0.

This theorem is useful in showing other connections, such the following theorems,
which are left as exercises (see exercises 5.14 and 5.15).

Theorem 5.7
Let K : X ×X → R be a symmetric kernel. Then, K is NDS iff exp(−tK) is a PDS
kernel for all t > 0.

The theorem provides another proof that Gaussian kernels are PDS: as seen earlier
(Example 5.4), the squared distance (x, x′) .→ ‖x − x′‖2 in RN is NDS, thus
(x, x′) .→ exp(−t||x − x′||2) is PDS for all t > 0.

Theorem 5.8
Let K : X × X → R be an NDS kernel such that for all x, x′ ∈ X ,K(x, x′) = 0 iff
x = x′. Then, there exists a Hilbert space H and a mapping Φ : X → H such that
for all x, x′ ∈ X ,

K(x, x′) = ‖Φ(x) − Φ(x′)‖2.

Thus, under the hypothesis of the theorem,
√

K defines a metric.

This theorem can be used to show that the kernel (x, x′) .→ exp(−|x− x′|p) in R
is not PDS for p > 2. Otherwise, for any t > 0, {x1, . . . , xm} ⊆ X and c ∈ Rm×1,
we would have:

m∑

i,j=1

cicje
−t|xi−xj |p =

m∑

i,j=1

cicje
−|t1/pxi−t1/pxj |p ≥ 0.

This would imply that (x, x′) .→ |x − x′|p is NDS for p > 2, which can be proven
(via theorem 5.8) not to be valid.
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5.5 Sequence kernels

The examples given in the previous sections, including the commonly used poly-
nomial or Gaussian kernels, were all for PDS kernels over vector spaces. In many
learning tasks found in practice, the input space X is not a vector space. The ex-
amples to classify in practice could be protein sequences, images, graphs, parse
trees, finite automata, or other discrete structures which may not be directly given
as vectors. PDS kernels provide a method for extending algorithms such as SVMs
originally designed for a vectorial space to the classification of such objects. But,
how can we define PDS kernels for these structures?

This section will focus on the specific case of sequence kernels, that is, kernels
for sequences or strings. PDS kernels can be defined for other discrete structures
in somewhat similar ways. Sequence kernels are particularly relevant to learning
algorithms applied to computational biology or natural language processing, which
are both important applications.

How can we define PDS kernels for sequences, which are similarity measures for
sequences? One idea consists of declaring two sequences, e.g., two documents or
two biosequences, as similar when they share common substrings or subsequences.
One example could be the kernel between two sequences defined by the sum
of the product of the counts of their common substrings. But which substrings
should be used in that definition? Most likely, we would need some flexibility in
the definition of the matching substrings. For computational biology applications,
for example, the match could be imperfect. Thus, we may need to consider some
number of mismatches, possibly gaps, or wildcards. More generally, we might need
to allow various substitutions and might wish to assign different weights to common
substrings to emphasize some matching substrings and deemphasize others.

As can be seen from this discussion, there are many different possibilities and
we need a general framework for defining such kernels. In the following, we will
introduce a general framework for sequence kernels, rational kernels, which will
include all the kernels considered in this discussion. We will also describe a general
and efficient algorithm for their computation and will illustrate them with some
examples.

The definition of these kernels relies on that of weighted transducers. Thus, we
start with the definition of these devices as well as some relevant algorithms.

5.5.1 Weighted transducers

Sequence kernels can be effectively represented and computed using weighted trans-
ducers. In the following definition, let Σ denote a finite input alphabet, ∆ a finite
output alphabet, and ε the empty string or null label, whose concatenation with
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2/8 b:b/2

0

b:b/2

3/2

b:a/3

1

a:b/3

a:a/2

b:a/4

a:a/1

Figure 5.3 Example of weighted transducer.

any string leaves it unchanged.

Definition 5.4
A weighted transducer T is a 7-tuple T = (Σ, ∆, Q, I, F,E, ρ) where Σ is a finite
input alphabet, ∆ a finite output alphabet, Q is a finite set of states, I ⊆ Q the
set of initial states, F ⊆ Q the set of final states, E a finite multiset of transitions
elements of Q×(Σ∪{ε})×(∆∪{ε})×R×Q, and ρ : F → R a final weight function
mapping F to R. The size of transducer T is the sum of its number of states and
transitions and is denoted by |T |.2

Thus, weighted transducers are finite automata in which each transition is labeled
with both an input and an output label and carries some real-valued weight.
Figure 5.3 shows an example of a weighted finite-state transducer. In this figure,
the input and output labels of a transition are separated by a colon delimiter, and
the weight is indicated after the slash separator. The initial states are represented
by a bold circle and final states by double circles. The final weight ρ[q] at a final
state q is displayed after the slash.

The input label of a path π is a string element of Σ∗ obtained by concatenating
input labels along π. Similarly, the output label of a path π is obtained by
concatenating output labels along π. A path from an initial state to a final state is
an accepting path. The weight of an accepting path is obtained by multiplying the
weights of its constituent transitions and the weight of the final state of the path.

A weighted transducer defines a mapping from Σ∗ × ∆∗ to R. The weight
associated by a weighted transducer T to a pair of strings (x, y) ∈ Σ∗ × ∆∗ is
denoted by T (x, y) and is obtained by summing the weights of all accepting paths

2. A multiset in the definition of the transitions is used to allow for the presence of several
transitions from a state p to a state q with the same input and output label, and even the
same weight, which may occur as a result of various operations.
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with input label x and output label y. For example, the transducer of figure 5.3
associates to the pair (aab, baa) the weight 3× 1× 4× 2 + 3× 2× 3× 2, since there
is a path with input label aab and output label baa and weight 3 × 1 × 4 × 2, and
another one with weight 3 × 2 × 3 × 2.

The sum of the weights of all accepting paths of an acyclic transducer, that
is a transducer T with no cycle, can be computed in linear time, that is O(|T |),
using a general shortest-distance or forward-backward algorithm. These are simple
algorithms, but a detailed description would require too much of a digression from
the main topic of this chapter.

Composition An important operation for weighted transducers is composition,
which can be used to combine two or more weighted transducers to form more
complex weighted transducers. As we shall see, this operation is useful for the
creation and computation of sequence kernels. Its definition follows that of com-
position of relations. Given two weighted transducers T1 = (Σ, ∆, Q1, I1, F1, E1, ρ1)
and T2 = (∆, Ω, Q2, I2, F2, E2, ρ2), the result of the composition of T1 and T2 is a
weighted transducer denoted by T1 ◦ T2 and defined for all x ∈ Σ∗ and y ∈ Ω∗ by

(T1 ◦ T2)(x, y) =
∑

z∈∆∗

T1(x, z) · T2(z, y), (5.19)

where the sum runs over all strings z over the alphabet ∆. Thus, composition is
similar to matrix multiplication with infinite matrices.

There exists a general and efficient algorithm to compute the composition of two
weighted transducers. In the absence of εs on the input side of T1 or the output
side of T2, the states of T1 ◦ T2 = (Σ, ∆, Q, I, F,E, ρ) can be identified with pairs
made of a state of T1 and a state of T2, Q ⊆ Q1 × Q2. Initial states are those
obtained by pairing initial states of the original transducers, I = I1 × I2, and
similarly final states are defined by F = Q ∩ (F1 × F2). The final weight at a state
(q1, q2) ∈ F1 × F2 is ρ(q) = ρ1(q1)ρ2(q2), that is the product of the final weights at
q1 and q2. Transitions are obtained by matching a transition of T1 with one of T2

from appropriate transitions of T1 and T2:

E =
⊎

(q1,a,b,w1,q2)∈E1
(q′

1,b,c,w2,q′
2)∈E2

{(
(q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2)

)}
.

Here, 9 denotes the standard join operation of multisets as in {1, 2} 9 {1, 3} =
{1, 1, 2, 3}, to preserve the multiplicity of the transitions.

In the worst case, all transitions of T1 leaving a state q1 match all those of T2

leaving state q′1, thus the space and time complexity of composition is quadratic:
O(|T1||T2|). In practice, such cases are rare and composition is very efficient.
Figure 5.4 illustrates the algorithm in a particular case.
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          a:b/0.5

a:a/0.6
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b:b/0.1

b:a/0.2
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a:b/0.3 3/0.6
a:b/0.4
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(a) (b)

(0, 0) (1, 1)a:b/.01
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a:a/.04
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b:a/.06 (3, 1)
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a:a/0.1

(3, 2)

a:b/.18

(3, 3)a:b/.24
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Figure 5.4 (a) Weighted transducer T1. (b) Weighted transducer T2. (c) Result
of composition of T1 and T2, T1 ◦ T2. Some states might be constructed during the
execution of the algorithm that are not co-accessible, that is, they do not admit a
path to a final state, e.g., (3, 2). Such states and the related transitions (in red) can
be removed by a trimming (or connection) algorithm in linear time.

As illustrated by figure 5.5, when T1 admits output ε labels or T2 input ε labels,
the algorithm just described may create redundant ε-paths, which would lead to
an incorrect result. The weight of the matching paths of the original transducers
would be counted p times, where p is the number of redundant paths in the result
of composition. To avoid with this problem, all but one ε-path must be filtered out
of the composite transducer. Figure 5.5 indicates in boldface one possible choice for
that path, which in this case is the shortest. Remarkably, that filtering mechanism
itself can be encoded as a finite-state transducer F (figure 5.5b).

To apply that filter, we need to first augment T1 and T2 with auxiliary symbols
that make the semantics of ε explicit: let T̃1 (T̃2) be the weighted transducer obtained
from T1 (respectively T2) by replacing the output (respectively input) ε labels with
ε2 (respectively ε1) as illustrated by figure 5.5. Thus, matching with the symbol ε1
corresponds to remaining at the same state of T1 and taking a transition of T2 with
input ε. ε2 can be described in a symmetric way. The filter transducer F disallows a
matching (ε2, ε2) immediately after (ε1, ε1) since this can be done instead via (ε2, ε1).
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Figure 5.5 Redundant ε-paths in composition. All transition and final weights are
equal to one. (a) A straightforward generalization of the ε-free case would generate
all the paths from (1, 1) to (3, 2) when composing T1 and T2 and produce an incorrect
results in non-idempotent semirings. (b) Filter transducer F . The shorthand x is
used to represent an element of Σ.

By symmetry, it also disallows a matching (ε1, ε1) immediately after (ε2, ε2). In the
same way, a matching (ε1, ε1) immediately followed by (ε2, ε1) is not permitted
by the filter F since a path via the matchings (ε2, ε1)(ε1, ε1) is possible. Similarly,
(ε2, ε2)(ε2, ε1) is ruled out. It is not hard to verify that the filter transducer F is
precisely a finite automaton over pairs accepting the complement of the language

L = σ∗((ε1, ε1)(ε2, ε2) + (ε2, ε2)(ε1, ε1) + (ε1, ε1)(ε2, ε1) + (ε2, ε2)(ε2, ε1))σ∗,

where σ = {(ε1, ε1), (ε2, ε2), (ε2, ε1), x}. Thus, the filter F guarantees that exactly
one ε-path is allowed in the composition of each ε sequences. To obtain the correct
result of composition, it suffices then to use the ε-free composition algorithm already
described and compute

T̃1 ◦ F ◦ T̃2. (5.20)

Indeed, the two compositions in T̃1 ◦ F ◦ T̃2 no longer involve εs. Since the size of
the filter transducer F is constant, the complexity of general composition is the



5.5 Sequence kernels 111

same as that of ε-free composition, that is O(|T1||T2|). In practice, the augmented
transducers T̃1 and T̃2 are not explicitly constructed, instead the presence of the
auxiliary symbols is simulated. Further filter optimizations help limit the number of
non-coaccessible states created, for example, by examining more carefully the case
of states with only outgoing non-ε-transitions or only outgoing ε-transitions.

5.5.2 Rational kernels

The following establishes a general framework for the definition of sequence kernels.

Definition 5.5 Rational kernels
A kernel K : Σ∗ × Σ∗ → R is said to be rational if it coincides with the mapping
defined by some weighted transducer U : ∀x, y ∈ Σ∗,K(x, y) = U(x, y).

Note that we could have instead adopted a more general definition: instead of using
weighted transducers, we could have used more powerful sequence mappings such
as algebraic transductions, which are the functional counterparts of context-free
languages, or even more powerful ones. However, an essential need for kernels is
an efficient computation, and more complex definitions would lead to substantially
more costly computational complexities for kernel computation. For rational kernels,
there exists a general and efficient computation algorithm.

Computation We will assume that the transducer U defining a rational kernel
K does not admit any ε-cycle with non-zero weight, otherwise the kernel value is
infinite for all pairs. For any sequence x, let Tx denote a weighted transducer with
just one accepting path whose input and output labels are both x and its weight
equal to one. Tx can be straightforwardly constructed from x in linear time O(|x|).
Then, for any x, y ∈ Σ∗, U(x, y) can be computed by the following two steps:

1. Compute V = Tx◦U ◦Ty using the composition algorithm in time O(|U ||Tx||Ty|).
2. Compute the sum of the weights of all accepting paths of V using a general
shortest-distance algorithm in time O(|V |).

By definition of composition, V is a weighted transducer whose accepting paths are
precisely those accepting paths of U that have input label x and output label y.
The second step computes the sum of the weights of these paths, that is, exactly
U(x, y). Since U admits no ε-cycle, V is acyclic, and this step can be performed in
linear time. The overall complexity of the algorithm for computing U(x, y) is then
in O(|U ||Tx||Ty|). Since U is fixed for a rational kernel K and |Tx| = O(|x|) for any
x, this shows that the kernel values can be obtained in quadratic time O(|x||y|).
For some specific weighted transducers U , the computation can be more efficient,
for example in O(|x| + |y|) (see exercise 5.17).
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PDS rational kernels For any transducer T , let T−1 denote the inverse of T ,
that is the transducer obtained from T by swapping the input and output labels of
every transition. For all x, y, we have T−1(x, y) = T (y, x). The following theorem
gives a general method for constructing a PDS rational kernel from an arbitrary
weighted transducer.

Theorem 5.9
For any weighted transducer T = (Σ, ∆, Q, I, F,E, ρ), the function K = T ◦ T−1 is
a PDS rational kernel.

Proof By definition of composition and the inverse operation, for all x, y ∈ Σ∗,

K(x, y) =
∑

z∈∆∗

T (x, z) T (y, z).

K is the pointwise limit of the kernel sequence (Kn)n≥0 defined by:

∀n ∈ N,∀x, y ∈ Σ∗, Kn(x, y) =
∑

|z|≤n

T (x, z) T (y, z),

where the sum runs over all sequences in ∆∗ of length at most n. Kn is PDS
since its corresponding kernel matrix Kn for any sample (x1, . . . , xm) is SPSD.
This can be see form the fact that Kn can be written as Kn = AA$ with
A = (Kn(xi, zj))i∈[1,m],j∈[1,N ], where z1, . . . , zN is some arbitrary enumeration of
the set of strings in Σ∗ with length at most n. Thus, K is PDS as the pointwise
limit of the sequence of PDS kernels (Kn)n∈N.

The sequence kernels commonly used in computational biology, natural language
processing, computer vision, and other applications are all special instances of
rational kernels of the form T ◦T−1. All of these kernels can be computed efficiently
using the same general algorithm for the computational of rational kernels presented
in the previous paragraph. Since the transducer U = T ◦ T−1 defining such PDS
rational kernels has a specific form, there are different options for the computation
of the composition Tx ◦ U ◦ Ty:

compute U = T ◦ T−1 first, then V = Tx ◦ U ◦ Ty;
compute V1 = Tx ◦ T and V2 = Ty ◦ T first, then V = V1 ◦ V −1

2 ;
compute first V1 = Tx ◦ T , then V2 = V1 ◦ T−1, then V = V2 ◦ Ty, or the similar

series of operations with x and y permuted.

All of these methods lead to the same result after computation of the sum of the
weights of all accepting paths, and they all have the same worst-case complexity.
However, in practice, due to the sparsity of intermediate compositions, there may
be substantial differences between their time and space computational costs. An



5.5 Sequence kernels 113

0

a:ε/1
b:ε/1

1a:a/1
b:b/1 2/1a:a/1

b:b/1

a:ε/1
b:ε/1

0

a:ε/1
b:ε/1

1a:a/1
b:b/1

a:ε/λ
b:ε/λ

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

(a) (b)

Figure 5.6 (a) Transducer Tbigram defining the bigram kernel Tbigram◦T−1
bigram for Σ =

{a, b}. (b) Transducer Tgappy bigram defining the gappy bigram kernel Tgappy bigram ◦
T−1

gappy bigram with gap penalty λ ∈ (0, 1).

alternative method based on an n-way composition can further lead to significantly
more efficient computations.

Example 5.5 Bigram and gappy bigram sequence kernels
Figure 5.6a shows a weighted transducer Tbigram defining a common sequence
kernel, the bigram sequence kernel , for the specific case of an alphabet reduced
to Σ = {a, b}. The bigram kernel associates to any two sequences x and y the sum
of the product of the counts of all bigrams in x and y. For any sequence x ∈ Σ∗ and
any bigram z ∈ {aa, ab, ba, bb}, Tbigram(x, z) is exactly the number of occurrences
of the bigram z in x. Thus, by definition of composition and the inverse operation,
Tbigram ◦ T−1

bigram computes exactly the bigram kernel.
Figure 5.6b shows a weighted transducer Tgappy bigram defining the so-called gappy

bigram kernel. The gappy bigram kernel associates to any two sequences x and y
the sum of the product of the counts of all gappy bigrams in x and y penalized
by the length of their gaps. Gappy bigrams are sequences of the form aua, aub,
bua, or bub, where u ∈ Σ∗ is called the gap. The count of a gappy bigram is
multiplied by |u|λ for some fixed λ ∈ (0, 1) so that gappy bigrams with longer
gaps contribute less to the definition of the similarity measure. While this definition
could appear to be somewhat complex, figure 5.6 shows that Tgappy bigram can be
straightforwardly derived from Tbigram. The graphical representation of rational
kernels helps understanding or modifying their definition.

Counting transducers The definition of most sequence kernels is based on the
counts of some common patterns appearing in the sequences. In the examples
just examined, these were bigrams or gappy bigrams. There exists a simple and
general method for constructing a weighted transducer counting the number of
occurrences of patterns and using them to define PDS rational kernels. Let X be
a finite automaton representing the set of patterns to count. In the case of bigram
kernels with Σ = {a, b}, X would be an automaton accepting exactly the set of
strings {aa, ab, ba, bb}. Then, the weighted transducer of figure 5.7 can be used to
compute exactly the number of occurrences of each pattern accepted by X.
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a:ε/1
b:ε/1

Figure 5.7 Counting transducer Tcount for Σ = {a, b}. The “transition” X : X/1

stands for the weighted transducer created from the automaton X by adding to
each transition an output label identical to the existing label, and by making all
transition and final weights equal to one.

Theorem 5.10
For any x ∈ Σ∗ and any sequence z accepted by X, Tcount(x, z) is the number of
occurrences of z in x.

Proof Let x ∈ Σ∗ be an arbitrary sequence and let z be a sequence accepted by
X. Since all accepting paths of Tcount have weight one, Tcount(x, z) is equal to the
number of accepting paths in Tcount with input label x and output z.

Now, an accepting path π in Tcount with input x and output z can be decomposed
as π = π0 π01 π1, where π0 is a path through the loops of state 0 with input label
some prefix x0 of x and output label ε, π01 an accepting path from 0 to 1 with input
and output labels equal to z, and π1 a path through the self-loops of state 1 with
input label a suffix x1 of x and output ε. Thus, the number of such paths is exactly
the number of distinct ways in which we can write sequence x as x = x0zx1, which
is exactly the number of occurrences of z in x.

The theorem provides a very general method for constructing PDS rational kernels
Tcount ◦ T−1

count that are based on counts of some patterns that can be defined
via a finite automaton, or equivalently a regular expression. Figure 5.7 shows the
transducer for the case of an input alphabet reduced to Σ = {a, b}. The general
case can be obtained straightforwardly by augmenting states 0 and 1 with other
self-loops using other symbols than a and b. In practice, a lazy evaluation can be
used to avoid the explicit creation of these transitions for all alphabet symbols and
instead creating them on-demand based on the symbols found in the input sequence
x. Finally, one can assign different weights to the patterns counted to emphasize
or deemphasize some, as in the case of gappy bigrams. This can be done simply by
changing the transitions weight or final weights of the automaton X used in the
definition of Tcount.
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5.6 Chapter notes

The mathematical theory of PDS kernels in a general setting originated with the
fundamental work of Mercer [1909] who also proved the equivalence of a condition
similar to that of theorem 5.1 for continuous kernels with the PDS property. The
connection between PDS and NDS kernels, in particular theorems 5.8 and 5.7,
are due to Schoenberg [1938]. A systematic treatment of the theory of reproducing
kernel Hilbert spaces was presented in a long and elegant paper by Aronszajn [1950].
For an excellent mathematical presentation of PDS kernels and positive definite
functions we refer the reader to Berg, Christensen, and Ressel [1984], which is also
the source of several of the exercises given in this chapter.

The fact that SVMs could be extended by using PDS kernels was pointed out
by Boser, Guyon, and Vapnik [1992]. The idea of kernel methods has been since
then widely adopted in machine learning and applied in a variety of different tasks
and settings. The following two books are in fact specifically devoted to the study
of kernel methods: Schölkopf and Smola [2002] and Shawe-Taylor and Cristianini
[2004]. The classical representer theorem is due to Kimeldorf and Wahba [1971].
A generalization to non-quadratic cost functions was stated by Wahba [1990]. The
general form presented in this chapter was given by Schölkopf, Herbrich, Smola,
and Williamson [2000].

Rational kernels were introduced by Cortes, Haffner, and Mohri [2004]. A general
class of kernels, convolution kernels, was earlier introduced by Haussler [1999]. The
convolution kernels for sequences described by Haussler [1999], as well as the pair-
HMM string kernels described by Watkins [1999], are special instances of rational
kernels. Rational kernels can be straightforwardly extended to define kernels for
finite automata and even weighted automata [Cortes et al., 2004]. Cortes, Mohri,
and Rostamizadeh [2008b] study the problem of learning rational kernels such as
those based on counting transducers.

The composition of weighted transducers and the filter transducers in the presence
of ε-paths are described in Pereira and Riley [1997], Mohri, Pereira, and Riley [2005],
and Mohri [2009]. Composition can be further generalized to the N -way composition
of weighted transducers [Allauzen and Mohri, 2009]. N -way composition of three
or more transducers can substantially speed up computation, in particular for PDS
rational kernels of the form T ◦T−1. A generic shortest-distance algorithm which can
be used with a large class of semirings and arbitrary queue disciplines is described by
Mohri [2002]. A specific instance of that algorithm can be used to compute the sum
of the weights of all paths as needed for the computation of rational kernels after
composition. For a study of the class of languages linearly separable with rational
kernels , see Cortes, Kontorovich, and Mohri [2007a].
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5.7 Exercises

5.1 Let K : X ×X → R be a PDS kernel, and let α : X → R be a positive function.
Show that the kernel K ′ defined for all x, y ∈ X by K ′(x, y) = K(x,y)

α(x)α(y) is a PDS
kernel.

5.2 Show that the following kernels K are PDS:

(a) K(x, y) = cos(x − y) over R × R.
(b) K(x, y) = cos(x2 − y2) over R × R.
(c) K(x, y) = (x + y)−1 over (0, +∞) × (0, +∞).
(d) K(x,x′) = cos ∠(x,x′) over Rn × Rn, where ∠(x,x′) is the angle between
x and x′.
(e) ∀λ > 0, K(x, x′) = exp

(
− λ[sin(x′ − x)]2

)
over R × R. (Hint : rewrite

[sin(x′ − x)]2 as the square of the norm of the difference of two vectors.)

5.3 Show that the following kernels K are NDS:

(a) K(x, y) = [sin(x − y)]2 over R × R.
(b) K(x, y) = log(x + y) over (0, +∞) × (0, +∞).

5.4 Define a difference kernel as K(x, x′) = |x − x′| for x, x′ ∈ R. Show that this
kernel is not positive definite symmetric (PDS).

5.5 Is the kernel K defined over Rn×Rn by K(x,y) = ‖x−y‖3/2 PDS? Is it NDS?

5.6 Let H be a Hilbert space with the corresponding dot product 〈·, ·〉. Show that
the kernel K defined over H × H by K(x, y) = 1 − 〈x, y〉 is negative definite.

5.7 For any p > 0, let Kp be the kernel defined over R+ × R+ by

Kp(x, y) = e−(x+y)p

. (5.21)

Show that Kp is positive definite symmetric (PDS) iff p ≤ 1. (Hint : you can use the
fact that if K is NDS, then for any 0 < α ≤ 1, Kα is also NDS.)

5.8 Explicit mappings.

(a) Denote a data set x1, . . . , xm and a kernel K(xi, xj) with a Gram matrix
K. Assuming K is positive semidefinite, then give a map Φ(·) such that
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K(xi, xj) = 〈Φ(xi), Φ(xj)〉.
(b) Show the converse of the previous statement, i.e., if there exists a mapping
Φ(x) from input space to some Hilbert space, then the corresponding matrix
K is positive semidefinite.

5.9 Explicit polynomial kernel mapping. Let K be a polynomial kernel of degree d,
i.e., K : RN ×RN → R, K(x,x′) = (x ·x′+c)d, with c > 0, Show that the dimension
of the feature space associated to K is

(
N + d

d

)
. (5.22)

Write K in terms of kernels ki : (x,x′) .→ (x · x′)i, i ∈ [0, d]. What is the weight
assigned to each ki in that expression? How does it vary as a function of c?

5.10 High-dimensional mapping. Let Φ : X → H be a feature mapping such that
the dimension N of H is very large and let K : X ×X → R be a PDS kernel defined
by

K(x, x′) = E
i∼D

[
[Φ(x)]i[Φ(x′)]i

]
, (5.23)

where [Φ(x)]i is the ith component of Φ(x) (and similarly for Φ′(x)) and where
D is a distribution over the indices i. We shall assume that |[Φ(x)]i| ≤ R for all
x ∈ X and i ∈ [1, N ]. Suppose that the only method available to compute K(x, x′)
involved direct computation of the inner product (5.23), which would require O(N)
time. Alternatively, an approximation can be computed based on random selection
of a subset I of the N components of Φ(x) and Φ(x′) according to D, that is:

K ′(x, x′) =
1
n

∑

i∈I

D(i)[Φ(x)]i[Φ(x′)]i, (5.24)

where |I| = n.

(a) Fix x and x′ in X. Prove that

Pr
I∼Dn

[|K(x, x′) − K ′(x, x′)| > ε] ≤ 2e
−nε2

2r2 . (5.25)

(Hint : use McDiarmid’s inequality).
(b) Let K and K′ be the kernel matrices associated to K and K ′. Show
that for any ε, δ > 0, for n > r2

ε2 log m(m+1)
δ , with probability at least 1 − δ,

|K′
ij − Kij | ≤ ε for all i, j ∈ [1,m].

5.11 Classifier based kernel. Let S be a training sample of size m. Assume that
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S has been generated according to some probability distribution D(x, y), where
(x, y) ∈ X × {−1, +1}.

(a) Define the Bayes classifier h∗ : X → {−1, +1}. Show that the kernel K∗

defined by K∗(x, x′) = h∗(x)h∗(x′) for any x, x′ ∈ X is positive definite
symmetric. What is the dimension of the natural feature space associated to
K∗?
(b) Give the expression of the solution obtained using SVMs with this kernel.
What is the number of support vectors? What is the value of the margin? What
is the generalization error of the solution obtained? Under what condition are
the data linearly separable?
(c) Let h : X → R be an arbitrary real-valued function. Under what condition
on h is the kernel K defined by K(x, x′) = h(x)h(x′), x, x′ ∈ X, positive
definite symmetric?

5.12 Image classification kernel. For α ≥ 0, the kernel

Kα : (x,x′) .→
N∑

k=1

min(|xk|α, |x′
k|α) (5.26)

over RN × RN is used in image classification. Show that Kα is PDS for all α ≥ 0.
To do so, proceed as follows.

(a) Use the fact that (f, g) .→
∫ +∞

t=0 f(t)g(t)dt is an inner product over the set
of measurable functions over [0, +∞) to show that (x, x′) .→ min(x, x′) is a
PDS kernel. (Hint : associate an indicator function to x and another one to x′.)
(b) Use the result from (a) to first show that K1 is PDS and similarly that Kα

with other values of α is also PDS.

5.13 Fraud detection. To prevent fraud, a credit-card company decides to contact
Professor Villebanque and provides him with a random list of several thousand
fraudulent and non-fraudulent events. There are many different types of events,
e.g., transactions of various amounts, changes of address or card-holder information,
or requests for a new card. Professor Villebanque decides to use SVMs with an
appropriate kernel to help predict fraudulent events accurately. It is difficult for
Professor Villebanque to define relevant features for such a diverse set of events.
However, the risk department of his company has created a complicated method to
estimate a probability Pr[U ] for any event U . Thus, Professor Villebanque decides
to make use of that information and comes up with the following kernel defined
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over all pairs of events (U, V ):

K(U, V ) = Pr[U ∧ V ] − Pr[U ] Pr[V ]. (5.27)

Help Professor Villebanque show that his kernel is positive definite symmetric.

5.14 Relationship between NDS and PDS kernels. Prove the statement of theo-
rem 5.7. (Hint : Use the fact that if K is PDS then exp(K) is also PDS, along with
theorem 5.6.)

5.15 Metrics and Kernels. Let X be a non-empty set and K : X × X → R be a
negative definite symmetric kernel such that K(x, x) = 0 for all x ∈ X .

(a) Show that there exists a Hilbert space H and a mapping Φ(x) from X to
H such that:

K(x, y) = ||Φ(x) − Φ(x′)||2 .

Assume that K(x, x′) = 0 ⇒ x = x′. Use theorem 5.6 to show that
√

K defines
a metric on X .
(b) Use this result to prove that the kernel K(x, y) = exp(−|x−x′|p), x, x′ ∈ R,
is not positive definite for p > 2.
(c) The kernel K(x, x′) = tanh(a(x·x′)+b) was shown to be equivalent to a two-
layer neural network when combined with SVMs. Show that K is not positive
definite if a < 0 or b < 0. What can you conclude about the corresponding
neural network when a < 0 or b < 0?

5.16 Sequence kernels. Let X = {a, c, g, t}. To classify DNA sequences using SVMs,
we wish to define a kernel between sequences defined over X. We are given a finite
set I ⊂ X∗ of non-coding regions (introns). For x ∈ X∗, denote by |x| the length
of x and by F (x) the set of factors of x, i.e., the set of subsequences of x with
contiguous symbols. For any two strings x, y ∈ X∗ define K(x, y) by

K(x, y) =
∑

z ∈(F (x)∩F (y))−I

ρ|z|, (5.28)

where ρ ≥ 1 is a real number.

(a) Show that K is a rational kernel and that it is positive definite symmetric.
(b) Give the time and space complexity of the computation of K(x, y) with
respect to the size s of a minimal automaton representing X∗ − I.
(c) Long common factors between x and y of length greater than or equal to
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n are likely to be important coding regions (exons). Modify the kernel K to
assign weight ρ|z|2 to z when |z| ≥ n, ρ|z|1 otherwise, where 1 ≤ ρ1 : ρ2. Show
that the resulting kernel is still positive definite symmetric.

5.17 n-gram kernel. Show that for all n ≥ 1, and any n-gram kernel Kn, Kn(x, y)
can be computed in linear time O(|x| + |y|), for all x, y ∈ Σ∗ assuming n and the
alphabet size are constants.

5.18 Mercer’s condition. Let X ⊂ RN be a compact set and K : X × X → R a
continuous kernel function. Prove that if K verifies Mercer’s condition (theorem 5.1),
then it is PDS. (Hint : assume that K is not PDS and consider a set {x1, . . . , xm} ⊆
X and a column-vector c ∈ Rm×1 such that

∑m
i,j=1 cicjK(xi, xj) < 0.)


