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1: The notation Bernoulli(p) corre-
sponds to the Bernoulli distribution: we
will writeX ∼ Bernoulli(p) whenever
X ∈ {0, 1} and P[X = 1] = p =

1 − P[X = 0]. Another way to obtain
a Bernoulli distribution is by setting
Xi = 1Yi∈A where Y1, . . . , Yn are ran-
dom variables valued in a probability
space (E, E), withA ∈ E , so thatXi ∼
Bernoulli(p) with p = P[Yi ∈ A].

2: From now on, iid will stand for in-
dependent and identically distributed.
More about this fundamental assump-
tion will follow.

3: Where
(
n
k

)
is the (n, k) binomial co-

efficient given by n!
k!(n−k)!

.

4: The linearity of the expectation gives
E[Sn] = nE[X1] = np since the Xi
are identically Bernoulli(p) distributed,
and, since the Xi are iid, we know that
V[Sn] = nV[X1] = np(1− p).

5: The notation Xn
as→ X stands for

the almost sure convergence of Xn to-
wards X while Xn  X stands for
the convergence of Xn towards X in
distribution.

Statistical models 1
1.1 Probabilities and statistics . 1
1.2 Statistical models and experi-
ences . . . . . . . . . . . . . . . 2

1.3 Statistics . . . . . . . . . . . 5
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1.6 Proofs . . . . . . . . . . . . . 8

Let us start with the most classical and simplest statistical experiment:
the coin toss. We toss a coin n times, and we model each toss by a
random variable in {0, 1}, where we decide that 1 means that the toss
ended up with heads (so that 0 means tails). To each toss is associated
a random variable, leading to random variables X1, . . . , Xn valued
in {0, 1}, where Xi encodes the outcome of the i-th toss. Each Xi

has distribution Bernoulli(p) for p ∈ [0, 1], where p corresponds to
the probability that a coin toss gives heads, namely P[Xi = 1].1

We assume that the Xi are independent (since the outcome of the
tosses are physically unrelated), and since we are tossing the same coin
each time, we assume that these outcomes have the same distribution
(meaning that p is constant along the tosses). Therefore, we assume
that X1, . . . , Xn are iid.2

1.1 Probabilities and statistics

Since we assume that the reader is familiar with probability theory, we
start this chapter with a comparison between what we do in probabilities
and what we do in statistics for the Bernoulli(p) model described
above.

Probabilities. In the field of probabilities, we suppose that p ∈
(0, 1) is known, and we study the properties of the sequence (Xi)i≥1.
For instance, we know that the distribution of Sn =

∑n
i=1Xi is

Binomial(n, p), namely that P[Sn = k] =
(
n
k

)
pk(1 − p)n−k for

k ∈ {0, . . . , n}.3 It is easy to see that E[Sn] = np and that V[Sn] =

np(1− p), where E[·] and V[·] stand respectively for the expectation
and the variance.4 We can study the asymptotic properties of Sn: the
law of large number tells us that

Sn
n

as→ p

as n → +∞ and the central limit theorem tells us by how much we
need to normalize Sn

n − p in order to obtain a non-zero limit

√
n
(Sn
n
− p
)
 Normal(0, p(1− p))

as n → +∞,5 where Normal(µ, σ2) stands for the Gaussian dis-
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6: But such things are way beyond the
topic of this book, let us just cite [1] as
a reference on the study of the random
walk and its importance in the field of
probability theory.

7: nothing can be done with them... it’s
just deterministic zeros and ones

8: The parameter p will quickly be-
come a mathematical variable that we
will use in equations, in order to per-
form calculus for instance. Therefore,
we will use the specific notation p0

for the ground truth parameter, namely
X1 ∼ Bernoulli(p0), while p will be
used as a generic parameter. A statisti-
cal parameter will usually be denoted as
θ, while the ground truth parameter will
be denoted as θ0 when necessary.

tribution with expectation µ and variance σ2. In the field of prob-
abilities, the object of interest would be the random variable Sn,
that we study knowing the value of p. In particular, if we replace
the Bernoulli(p) distribution by the Rademacher distribution where
P[Xi = 1] = 1− P[Xi = −1] = p, the random variable Sn becomes
a random walk for which many things can be said, depending on the
value of p.6

Statistics. In statistics, for the Bernoulli(p) example, we don’t really
care about Sn, but we do care about p. We assume that p is unknown,
and we want to find out things about it. This objective is called statisti-
cal inference of the parameter p. For instance, we would like to know
if p = 1/2 or not, in order to find out if the coin is well-balanced and
not rigged. The random variables X1, . . . , Xn (and Sn) live on some
probability space (Ω,A,P), but we don’t really care about it either in
statistics. We will always assume, in statistics, that each observed out-
come xi ∈ {0, 1} of a coin toss is a realization of the random variable
Xi, namely that

xi = Xi(ω)

for some event ω ∈ Ω. The realizations xi are also called data or
samples or observations. But, actually, we will also refer to the random
variables Xi in the same way, as data, samples or observations, since
we won’t manipulate the xi mathematically,7 while we will work a
lot with the random variables X1, . . . , Xn. In statistics, we can do
whatever we want with X1, . . . , Xn in order to say things about p, but
we will never assume p to be known.8 We will construct measurable
functions of (X1, . . . , Xn) that do not depend on p, these are called
statistics, in order to tell things about the unknown parameter p. The
object of interest in the field of statistics is, therefore, the distribution
of the observations rather than the observations themselves.

1.2 Statistical models and experiences

Let us consider another very classical problem: the election poll prob-
lem, where a population of size N vote for one of two candidates A
and B. There are NA people voting for A while N −NA vote for B,
and we want to know about θ0 = NA/N . We perform of poll including
n � N voters and obtain observations x1, . . . , xn ∈ {0, 1}, where
xi = 1 (resp. xi = 0) means that voter i votes for A (resp. B). In this
problem, both NA and N are so large that we can suppose that

(x1, . . . , xn) = (X1(ω), . . . , Xn(ω))

for some ω ∈ Ω, where all Xi : (Ω,A,P) → ({0, 1},P({0, 1}) For a finite set E, the notation P(E)

stands for the σ-algebra corresponding
to the set of all the parts of E.

for
i = 1, . . . , , n are such that Xi ∼ Bernoulli(θ0). Let’s look a little bit
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9: In this book, we will quickly forget
to write P⊗n and will write simply P
when computations are clear enough, to
avoid overloaded notations.

10: The author of this book does not
know anything about screws.

Figure 1.1: I can’t resist the temptation
of showing you a screw, so here it is.

11: A real random variable X is sym-
metrical whenever PX = P−X . This
means that P[X ≤ −x] = P[X ≥ x]

so that F (−x) = 1 − F (x−) if F is
the distribution function of X . Also, if
X has a density f with respect to the
Lebesgue measure, then f is an even
function.

at all these mathematical objects. In statistics, we are mainly only inter-
ested by the fact that the observations are valued in ({0, 1},P({0, 1})
and that the distribution is PXi = P ◦X−1

i = Bernoulli(θ0), which
is fully described by its parameter θ0 ∈ (0, 1). Once again, we don’t
really care about (Ω,A,P).

Statistical model. The statistical model for X = (X1, . . . , Xn) ∈
{0, 1}n is the family of distributions{

P⊗nθ : θ ∈ (0, 1)
}

=
{

Bernoulli(θ)⊗n : θ ∈ (0, 1)
}
,

which is a family indexed by θ ∈ (0, 1). The notation P⊗n = P ⊗
· · · ⊗ P stands for the tensor product, namely P⊗n[A1 × · · · ×An] =∏n
i=1 P[Ai] for any Ai ∈ A, i = 1, . . . , n.9 When we say that this is

a statistical model for X , we assume that there exist θ0 ∈ (0, 1) such
that X ∼ Bernoulli(θ0). Once again, let us insist on the following: we
do whatever we want with X1, . . . , Xn but never with θ0, which is the
unknown parameter.

Another (naive) example. Let us consider the problem of the quality
of production of screws. The dimensions of the screws must satisfy
some strong constraints, for instance their length must match quite
accurately some fixed size.10

Millions of screws come out of the production chain, and we can’t
test all of them. Therefore, we need to assess the production quality
by selecting at random a small set of n screws, and we measure their
lengths x1, . . . , xn. Since these lengths are highly concentrated around
the theoretical desired length µ, and since production errors are usually
small, we decide to choose a Gaussian model: we assume that xi =

Xi(ω) for Xi ∼ Normal(µ, σ2), where σ2 corresponds to a variance
coming from the (hopefully) small production errors.

A model is a simplification of the reality. For this example, we make
the following modeling assumptions.

Distribution choice. We choose the distribution Normal(µ, σ2) for
the lengths. So, we implicitly assume that the true underlying dis-
tribution of the lengths is symmetrical and highly concentrated
around µ. This may or may not be realistic.11

The iid assumption. We will assume also that Xi are iid. What this
means in practice is that we need to very careful in the way we
select the screws coming out of the production lines: for instance,
we should pick screws all along a week or a month, at different
times, and not all from the same production line, in order to
avoid time and machine biases.
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Figure 1.2: Illustration of the lower
and upper bounds proposed in Equa-
tion (1.1).

12: The queue of a real random variable
Z is the function x 7→ P(Z > x) =:

1 − FZ(x). Whenever Z ∈ [0,+∞)

almost surely, this function is called also
the survival function.

Once again, a statistical model is always a simplification and an
approximation of the truth. By truth we mean the true distribution
P(X1,...,Xn) of (X1, . . . , Xn). For instance, the Normal(0, 1) distribu-
tion has density φ(x) = e−x

2/2/
√

2π supported on R. This means that
realizations of a Normal(0, 1) distribution can take any value in R,
while real samples are usually bounded. However, we can prove that if
Z ∼ Normal(0, 1), then Φ(x) := P[Z ≤ x] satisfies

(1

x
− 1

x3

) 1√
2π
e−x

2/2 ≤ 1− Φ(x) ≤ 1

x
√

2π
e−x

2/2 (1.1)

for any x ≥ 1, which means that the queue12 of the Normal distribution
is very tight. For x = 6 for instance, we have P(Z > x) ≤ 10−9: we
will actually never see realizations of Normal(0, 1) outside of [−6, 6],
and rarely outside of [−3, 3]. A proof of (1.1) is given in Section 1.6
below.

Definition 1.1 A statistical experiment consists of the following
two things:

I A random object X valued in a measurable space (E, E)

I A family of distributions P = {Pθ : θ ∈ Θ} on (E, E).

We suppose that PX = P ◦X−1 ∈ P , which means that PX = Pθ0
for some θ0 ∈ Θ. We say that P is a statistical model for X and we
will denote the statistical experiment as (X,P). We call Θ the set of
parameters of the model.

We call X a random object in Defini-
tion 1.1 to stress that it can be a real
random variable, a random vector, a ran-
dom matrix, among other things. Also,
the assumption PX ∈ P means that
the model is well-specified, which is a
strong assumption, since it requires that
the true distribution belongs to the cho-
sen model P .

The random variable X : (Ω,A,P) → (E, E) has distribution PX =

P ◦X−1 which is the probability image of P by X on (Ω,A). We will
always suppose that there is a family {Pθ : θ ∈ Θ} on (Ω,A) that
induce {Pθ : θ ∈ Θ} on (E, E) and we will use the notations

Pθ[A] = Pθ[X ∈ A] = Pθ[{ω ∈ Ω : X(ω) ∈ A}] ∀A ∈ E .

Once again, (Ω,A,P) is a purely mathematical build of little interest
in statistics. We could even assume that X is the identity function and
that (Ω,A) = (E, E). Because of the transfer formula∫

f(X(ω))Pθ(dω) =

∫
f(x)Pθ(dx),

we can even work only with Pθ and forget about Pθ and the space
(Ω,A).

We will often work with a set of finite-dimensional parameters Θ ⊂ Rd,
which corresponds to a parametric model, but this space can be more
complicated than that (it can be a set of functions with some smoothness
properties for instance, such a case is covered by a field called non-
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parametric statistics [2, 3] [2]: Tsybakov (2008), Introduction to
nonparametric estimation
[3]: Wasserman (2006), All of nonpara-
metric statistics

). We will use the notations

EQ[f(Y )] = EY∼Q[f(Y )] :=

∫
f(y)Q(dy)

where we implicitly assume, when computing this expectation, that
Y ∼ Q, and whenever Q = Pθ, we will shorten this notation as
follows:

Eθ[f(X)] := EPθ [f(X)] =

∫
f(x)Pθ(dx).

We will often work with iid data, namely a sampled statistical experi-
ment, as explained in the next definition.

Definition 1.2 A n-sampled statistical experiment corresponds to
data X = (X1, . . . , Xn) with Xi iid and P = {P⊗nθ : θ ∈ Θ}.

Namely, for a n-sampled statistical experiment and A =
∏n
i=1Ai, one

has the following:

P⊗nθ [A] = P⊗nθ [(X1, . . . , Xn) ∈ A1 × · · · ×An]

=

n∏
i=1

Pθ[Xi ∈ Ai] =

n∏
i=1

Pθ[Ai].

However, we will quickly forget about n-sampled experiments and
simply say that we observe iid data X1, . . . , Xn from a model P =

{Pθ ∈ Θ} (namely PX1 ∈ P).
and when there is little doubt about what
we are computing, we will simply forget
to write the ⊗n exponents.

1.3 Statistics

We really need at this point to tell the reader what a statistic is.

Definition 1.3 Given a statistical experiment (X, {Pθ : θ ∈ Θ}),
we call statistic any measurable function of X that does not depend
on θ. A statistic is therefore a quantity that we can compute using
data only.

If X is a random variable in Rn and S a random variable in R, then
we know that S is a statistic, namely S = f(X) for some Borel
measurable function f , if an only if S is σ(X)-measurable (or simply
X-measurable). 13

13: We recall that σ(X) is the σ-
algebra generated by X , namely
σ(X) = X−1(Bn) where Bn is the
Borel σ-algebra of Rn and note that
this statement comes from the Doob
lemma: for such X and S, we have
that S is X-measurable if and only if
S = f(X) for some Borel measurable
function Rn → R.

Now, let us go back to the Bernoulli(θ) experiment. Let us first recall
that for this experiment we have iid samples X = (X1, . . . , Xn),
that (E, E) = ({0, 1}n,P({0, 1}n)) and that Pθ = Bernoulli(θ) with
Θ = (0, 1). Intuitively, an “equivalent” experiment is Sn :=

∑n
i=1Xi
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14: The sigmoid function is heavily
used in statistics and machine learning,
we will come back to it later in the book.

and (E, E) = ({0, . . . , n},P({0, . . . , n})) with Pθ = Binomial(n, θ)

and θ ∈ Θ = (0, 1). Let us observe that

Pθ[X1 = x1, . . . , Xn = xn|Sn = k] =
θk(1− θ)n−k(
n
k

)
θk(1− θ)n−k

=
1(
n
k

) (1.2)

whenever xi ∈ {0, 1} for i = 1, . . . , n and k =
∑n

i=1 xi, while
Pθ[X1 = x1, . . . , Xn = xn|Sn = k] = 0 otherwise. This proves that
the conditional distribution of (X1, . . . , Xn)|Sn does not depend on
θ. If we know Sn, then we can, without knowing θ, build a “copy”
X ′ = (X ′1, . . . , X

′
n) of the original sample X , in the sense that X ′ has

the same distribution as X . This is simply achieved, as indicated by
Equation (1.2), by choosing the positions of the Sn = k ones (among
n ones and zeros) uniformly at random. This means that X does not
bring more information about θ than Sn, and that that Sn is somehow
“sufficient” from a statistical point of view. Such a random variable is
called a sufficient statistic.

For the Bernoulli(θ) experiment, we will look for statistics of X al-
lowing to infer the unknown parameter θ. We already now that we
can restrict ourselves to statistics of Sn instead of X , since Sn is
sufficient.

1.4 Identifiable models

The only source of information about θ available to us about is X ,
through its distribution Pθ. So, in order to infer θ, we need, at least, to
be able to recover θ given Pθ. We will therefore often require that the
model is identifiable, as defined below.

Definition 1.4 We say that a model P = {Pθ : θ ∈ Θ} is identifi-
able whenever the function Θ→ P given by θ 7→ Pθ is injective.

Identifiability is a necessary requirement when one wants to perform
statistical inference. If θ 7→ Pθ is not injective, then there is no way to
find back θ from X ∼ Pθ.

Example 1.1 Obviously, θ 7→ Bernoulli(θ) is injective on (0, 1)

and similarly x 7→ Bernoulli(sigmoid(x)) is injective on R. A
stupid example is µ 7→ Normal(µ2, 1) on R, which corresponds to
a non-identifiable model.

In Example 1.1, we used the sigmoid function given by sigmoid(x) =

1/(1 + e−x) for any x ∈ R.14 Identifiability is generally a property
that we ensure by choosing and parametrizing correctly the considered
statistical model.
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However, not all interesting and useful statistical models are identi-
fiable. An interesting example of non-identifiable model is given by
mixture models, such as the Gaussian mixture model, where we con-
sider a distribution on Rd with a density with respect to the Lebesgue
measure given by 15

15: The expectations µk ∈ Rd corre-
spond to the centroids of the clusters.
The covariances Σk ∈ Rd×d are such
that Σk � 0, which means that Σk is
a positive definite matrix. The matrix
Σk parametrizes the shape of cluster
k around µk. Finally, the parameters
πk ≥ 0 are such that

∑K
k=1 πk = 1

and parametrize the relative population
of each cluster.

fθ(x) =

K∑
k=1

πkφµk,Σk(x)

=:
K∑
k=1

πk√
(2π)d det(Σk)

exp
(
− 1

2
(x− µk)>Σ−1

k (x− µk)
)

for any x ∈ Rd, where θ = (πk, µk,Σk)k=1,...,K and K ≥ 1 is an
integer corresponding to the number of “clusters”. Such a mixture den-

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1.3: 500 realizations of a Gaus-
sian mixture with d = 2, K = 3 π =
[π1, π2, π3] = [0.1, 0.6, 0.3], µ1 =
[−1, 1], µ2 = [0, 1], µ3 = [−0.5, 0.5]
and Σ1 = Σ2 = Σ3 = 0.01× I2.

sity is non-identifiable, since we have fθ = fσ(θ) for any permutation
σ(θ) = (πσ(k), µσ(k),Σσ(k))k=1,...,K of θ where σ is a permutation
of {1, . . . ,K}. This simply means that the density distribution fθ is
invariant by a relabeling of the clusters numbers. Despite the fact that
such a mixture model is not identifiable, it is often used for model-
based clustering, which is an instance of unsupervised learning [4] [4]: Murphy (2012), Machine Learning,

A Probabilistic Perspective
.

Another family of non-identifiable models is deep neural networks, in
which an infinitely large number of parametrizations lead to the same
prediction function [5] [5]: Goodfellow et al. (2016), Deep

learning
.

1.5 Dominated models

Whenever P = {Pθ : θ ∈ Θ} with Θ ⊂ Rd, we say that P is a
parametric model, since it is parametrized by a finite-dimensional pa-
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16: The notation δx will stand for the
Dirac mass at x which is the probabil-
ity measure satisfying

∫
f(u)δx(du) =

f(x) for any measurable function f .

17: We recall that if P and Q are two
finite measures on the same probabil-
ity space, P � Q means that the mea-
sure P is absolutely continuous with re-
spect to Q, namely that Q(A) = 0 ⇒
P (A) = 0 for any measurable set A.

rameter, trivial instances being {Bernoulli(θ) : θ ∈ (0, 1)} for which
d = 1 and {Normal(µ, v) : (µ, v) ∈ R× (0,+∞)} for which d = 2.
We say that both models are dominated, the first being dominated by
the counting measure ν = δ0 + δ1 on {0, 1},16 and the second by the
Lebesgue measure on R.17

Definition 1.5 We say that a model P = {Pθ : θ ∈ Θ} is dominated
if there is a σ-finite measure µ such that Pθ � µ for all θ ∈ Θ.

In Definition 1.5, we require that the dominating measure is σ-finite,
so that we can apply the Radon-Nikodym theorem: since Pθ � µ for
all θ ∈ Θ, there is a density

fθ =
dPθ
dµ

for all θ ∈ Θ, with is unique µ-almost surely. This means that Pθ[A] =∫
fθ(x)µ(dx) for any measurable set A. Let us recall the Radon-Nikodym the-

orem. Let P be a probability and Q

be a σ-finite measure on a measurable
space (Ω,A) and assume that P �
Q. Then, there is a non-negative ran-
dom variable L such that P [A] =∫

Ω
L(ω)1A(ω)Q(dω) for any A ∈ A.

We denote L = dP/dQ and L is
unique Q-almost surely.

This domination property
allows to work with densities instead of distributions: a model can be
therefore defined as a family of densities {fθ : θ ∈ Θ} together with a
dominating measure (which is in most cases the Lebesgue measure, a
counting measure, or a combination of both.)

Example 1.2 Let us consider the zero-inflated Laplace distribution,
which is a distribution on R given by

Pθ(dx) = π0δ0(dx) + (1− π0)
λ

2
e−λ|x|dx

for θ = (π0, λ) ∈ Θ = (0, 1) × (0,+∞), which is dominated by
the measure µ = δ0 + Lebesgue, where Lebesgue stands for the
Lebesgue measure on R.

The notation P (dx) = f(x)dx means
that the distribution P has density f

with respect to the Lebesgue measure.

Non-dominated models are usually pathological and uninteresting ex-
amples, such as the model

Pθ =
1

e

∑
n∈N

1

n!
δθn

for θ ∈ (0,+∞), which cannot be dominated by a σ-finite measure.

1.6 Proofs

Proof of Inequalities (1.1). The upper bound is just easily obtained
using

1−Φ(x) =
1√
2π

∫ +∞

x
e−t

2/2dt ≤ 1√
2π

∫ +∞

x

t

x
e−t

2/2dt =
e−x

2/2

x
√

2π
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while the lower bound comes from the fact that∫ +∞

x

(
1− 3

t4

)
e−t

2/2dt =
(1

x
− 1

x3

)
e−x

2/2

which concludes the proof.
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In this Chapter, we introduce the three main statistical inference prob-
lems: estimation, confidence intervals and tests. Each problem will
be instantiated with the simple Bernoulli model, where we have iid
samples X1, . . . , Xn distributed as Bernoulli(θ) with θ ∈ (0, 1). Let
us start with the first inference problem: estimation.

2.1 Estimation

We want to infer θ, or estimate it by finding a statistic which is a
measurable function of (X1, . . . , Xn)1

1: Once again, since we are doing statis-
tics, the only thing we are allowed to use
is the data.

or a measurable function of
Sn =

∑n
i=1Xi thereof, since Sn is sufficient, see Section 1.3. We will

denote such a statistic as

θ̂n = θ̂n(X1, . . . , Xn).

This function does not depend on θ, but of course its distribution does.
Ideally, we want θ̂n to be “close” to θ, since we want a good estimator,
so that the first thing we need to do is to quantify “closeness”. For
instance, we could want |θ̂n−θ| to be close to 0 with a large probability,
since we do not forget that θ̂n is a random variable, as a function of the
data (X1, . . . , Xn). The most natural distance is arguably the Euclidean
one, in this context the L2 distance, which leads to the quadratic risk.2

Definition 2.1 (Quadratic risk) Consider a statistical model with
data X and set of parameters Θ ⊂ R and an estimator θ̂(X). The
quadratic risk of θ̂ is given by

R(θ̂, θ) = Eθ[(θ̂ − θ)2] =

∫
E

(θ̂(x)− θ)2Pθ(dx).

We consider the quadratic risk as a function Θ→ R+ of the parame-
ter given by θ 7→ R(θ̂, θ).

At this point, it’s useful to recall some classical inequalities on the
queues of random variables. The Markov inequality tells us that if Y is
a real random variable such that E|Y |p < +∞ for some p > 0 then

P[|Y | > t] ≤ E|Y |p

tp

for any t > 0. This tells us that the more Y has moments3 the more
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4: More precisely, in Pθ-probability,
namely Pθ[|θ̂n − θ| > ε] → 0 as
n → +∞ for any ε > 0, but we will
write θ̂n

P→ θ in order to keep the nota-
tions as simple as possible.

the queue of Y is tight (it goes faster to 0 with t → +∞). Markov’s
inequality with p = 2 entails

P[|θ̂ − θ| > t] ≤ R(θ̂, θ)

t2
(2.1)

which tells us that whenever the quadratic risk is small, then θ̂ is close
to θ with a large probability.

Whenever R(θ̂n, θ) → 0 with n → +∞, we will write θ̂n
L2

→ θ,
which stands for convergence in L2 norm, which entails, because
of Inequality (2.1), that θ̂n

P→ θ, which stands for convergence in
probability.4

Definition 2.2 We say that θ̂n is consistent whenever Pθ[|θ̂n − θ| >
ε]→ 0 as n→ +∞ for any ε > 0 and any θ ∈ Θ. We say that it is
strongly consistent whenever Pθ[θ̂n → θ] = 1 for any θ ∈ Θ.

In Definitions 2.1 and 2.2 above, if Θ ⊂ Rd, it suffices to replace | · | by
the Euclidean norm ‖·‖2, where ‖x‖2 = (x>x)1/2 = (

∑d
j=1 x

2
j )

1/2.

Bias variance decomposition. The bias-variance decomposition is
the following decomposition of the quadratic risk between two terms: a
bias term denoted b(θ̂, θ) (squared in the formula) and a variance term:

R(θ̂, θ) = Eθ[(θ̂ − θ)2] = (Eθ[θ̂]− θ)2 + Vθ[θ̂]

= b(θ̂, θ)2 + Vθ[θ̂].
(2.2)

When b(θ̂, θ) = 0 for all θ ∈ Θ we say that the estimator θ̂ is unbiased.
This means that this estimator will not over or under-estimate θ, since
its expectation equals θ.

Back to Bernoulli. Going back to the Bernoulli(θ) model, we con-
sider the estimator θ̂n = Sn/n = n−1

∑n
i=1Xi. We already know

many things about this estimator:

1. We have Eθ[θ̂n] = θ which means that θ̂n is unbiased;
2. The bias-variance decomposition gives

R(θ̂n, θ) = Vθ[θ̂n] =
θ(1− θ)

n
≤ 1

4n
→ 0 (2.3)

which means that θ̂n
L2

→ θ and which entails that θ̂n is consistent;
3. The law of large number tells us that θ̂n

as→ θ, hence θ̂n is
strongly consistent;
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5: If we toss the coin 1000 times
and get 420 heads, the realization
of this confidence interval at 95% is
[0.35, 0.49].

4. The central limit theorem tells us that

√
n(θ̂n − θ) Normal(0, θ(1− θ)). (2.4)

The points 2–4 from above are all different ways of saying that when n
is large, then θ̂n is close to θ.

In practice, an estimator leads to a value: for the Bernoulli experiment
with n = 100 and 42 ones you end up with a single estimated value
0.42. But what if we want to include uncertainty in this estimation?
Namely how confident are we about this 0.42 value? Moreover, what
do we mean by “when n is large enough”? Can we quantify this
somehow? These questions can be answered by considering another
inference problem: confidence intervals.

2.2 Confidence intervals

Here, we don’t only want to build an estimator θ̂n but also to quantify
the uncertainty associated to this estimation.

2.2.1 Non-asymptotic coverage

Combining Inequalities (2.1) and (2.3) leads to

Pθ[|θ̂n − θ| > t] ≤ 1

4nt2
,

so that for α ∈ (0, 1) and the choice tα = 1/(2
√
nα) we have

Pθ
{
θ ∈ [θ̂Ln , θ̂

R
n ]
}
≥ 1− α (2.5)

for any θ ∈ (0, 1), where

θ̂Ln := θ̂n −
1

2
√
nα

and θ̂Rn := θ̂n +
1

2
√
nα

.

Therefore, if we choose α = 0.05 = 5%, we know that θ ∈ [θ̂Ln , θ̂
R
n ]

with a probability larger than 95%. We say in this case that the interval
[θ̂Ln , θ̂

R
n ] is a confidence interval with coverage 95%.5

If α = 0 we have no other choice than using the whole R as a confi-
dence interval: α provides us with some slack, so that we can build
a non-absurdly large confidence interval. We have that |θ̂Rn − θ̂Ln | in-
creases as α decreases, since a smaller αmeans more confidence, hence
a larger interval. On the contrary, |θ̂Rn − θ̂Ln | decreases with the sample
size n.
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Definition 2.3 (Confidence interval) Consider a statistical model
with data X and set of parameters Θ ⊂ R. Fix a confidence level
α ∈ (0, 1) and consider two statistics θ̂L(X) and θ̂R(X). Whenever

Pθ
{
θ ∈ [θ̂L(X), θ̂R(X)]

}
≥ 1− α (2.6)

for any θ ∈ Θ, we say that [θ̂L(X), θ̂R(X)] is a confidence interval
at level or coverage 1− α.

Inequality (2.6) is called the coverage property of the confidence in-
terval. More generally, when Θ ⊂ Rd, we will say that S(X) is
a confidence set if it is a statistic satisfying the coverage property
Pθ[θ ∈ S(X)] ≥ 1− α for any θ ∈ Θ.

Remark 2.1 Whenever we need only an upper or lower bound on θ
(for instance, when we need to check statistically that some toxicity
level is below some threshold), we build a unilateral or one-sided
confidence interval, where we choose either θ̂L = −∞ (0 for the
Bernoulli model) or θ̂R = +∞ (1 for the Bernoulli model). Indeed,
at a fixed level 1− α, the bound provided by a one-sided confidence
interval is tighter than the bound of a two-sided interval.

But, we can do better for the Bernoulli model (or any model where
samples are bounded almost surely) thanks to the following Hoeffding
inequality.

Theorem 2.1 (Hoeffding) Let X1, . . . , Xn be independent random
variables such that Xi ∈ [ai, bi] almost surely and let S =

∑n
i=1Xi.

Then,

P[S ≥ ES + t] ≤ exp
(
− 2t2∑n

i=1(bi − ai)2

)
holds for any t > 0.

Theorem 2.1 is something called a deviation inequality: it provides a
control on the probability of deviation of S with respect to its mean.
It shows that bounded random variables are sub-Gaussian, since it
shows that the queue of S − ES is bounded by exp(−ct2) for some
constant c (that depends on n). The proof of Theorem 2.1 is provided
in Section 2.4.

Back to Bernoulli. Let’s apply Theorem 2.1 to the Bernoulli model
Xi ∼ Bernoulli(θ) so that ai = 0, bi = 1 and therefore P[S ≥
ES+t] ≤ e−2t2/n. Using again Theorem 2.1 withXi replaced by−Xi

together with an union bound6

6: Using Theorem 2.1 withXi replaced
by −Xi gives P[−S + ES ≥ t] ≤
e−2t2/n, so that P[|S − ES| ≥ t] ≤
P[S − ES ≥ t] + P[S − ES ≤ −t] ≤
2e−2t2/n.leads to P[|S − ES| ≥ t] ≤ 2e−2t2/n.

So, for some α ∈ (0, 1), we obtain another confidence interval, since
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8: See Proposition 2.5 below and its
proof for details on this generalized in-
verse and its properties, together with
Example 2.3.

the following coverage property holds:

P
[
θ̂n −

√
log(2/α)

2n
≤ θ ≤ θ̂n +

√
log(2/α)

2n

]
≥ 1− α.

This proves that [θ̂n ±
√

log(2/α)/(2n)] is a confidence interval at
level 1− α.7

7: For 1000 tosses and 420 heads, the
realization of this interval at level 95%

is [0.37, 0.46]. It’s a bit more precise
than the previous one, which was based
on Markov’s inequality.Let’s compare the two confidence intervals we obtained

so far for the Bernoulli model. It can bee seen that

1

2
√
nα

>

√
log(2/α)

2n

for α < 0.23, although both sides are O(1/
√
n). Only the dependence

on the level α is improved with the confidence interval obtained through
Hoeffding’s inequality, since it exploits the sub-Gaussianity of the
Bernoulli distribution, while the first confidence interval (2.5) only
used the upper bound (2.1) on the variance.

There is yet another way to build a confidence interval, called exact
confidence interval. Let us denote by Fn,θ the distribution function of
Binomial(n, θ). It is given by

Fn,θ(x) =

[x]∑
k=0

(
n

k

)
θk(1− θ)n−k (2.7)

for x ∈ [0, n], where [x] stands for the integer part of x, while
Fn,θ(x) = 0 if x < 0 and Fn,θ(x) = 1 if x ≥ n. We can consider
the generalized inverse F−1

n,θ of Fn,θ, also called the quantile function
of Binomial(n, θ), for which we know that F−1

n,θ (α) ≤ F−1
n,θ′(α) for

any θ ≤ θ′ and α ∈ (0, 1).8 Because of this, we know that the set
{θ ∈ (0, 1) : F−1

n,θ (α/2) ≤ nθ̂n ≤ F−1
n,θ (1 − α/2)} is an interval, so

that defining

θ̂L = inf{θ ∈ (0, 1) : F−1
n,θ (1− α/2) ≥ nθ̂n}

and
θ̂R = sup{θ ∈ (0, 1) : F−1

n,θ (α/2) ≤ nθ̂n}

leads to the coverage property

Pθ
{
θ ∈ [θ̂L, θ̂R]

}
= Pθ

[
F−1
n,θ (α/2) ≤ nθ̂n ≤ F−1

n,θ (1− α/2)
]

= 1− α/2− α/2 = 1− α

since nθ̂n ∼ Binomial(n, θ). This confidence interval is called “exact”
since it uses the exact quantile function of nθ̂n. It is therefore even
tighter than the previous ones.
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9: This uses the porte-manteau theo-
rem, which says that Xn  X if and
only if P[Xn ∈ A] → P[X ∈ A] for
any Borelian set A such that P[X ∈
∂A] = 0, where ∂A stands for the
boundary of A.

10: We recall that Φ−1 is the quan-
tile function of Normal(0, 1), namely
the inverse of the distribution func-
tion Φ(x) = P[Z ≤ x] with Z ∼
Normal(0, 1).

2.2.2 Asymptotic coverage

For the previous confidence intervals, we adopted a non-asymptotic
approach: the coverage properties hold for any value of n ≥ 1. This
was possible since the distribution of Sn is a simple Binomial(n, θ)

distribution, for which many computations can be made explicit. How-
ever, in general, the exact distribution of an estimator θ̂n cannot always
be exhibited, and in such cases, we often use Gaussian approximations,
thanks to the central limit theorem. Let’s do this for the Bernoulli
model. We know from (2.4) that

Pθ
[√

n

θ(1− θ)
(θ̂n − θ) ∈ I

]
→ P[Z ∈ I] (2.8)

where Z ∼ Normal(0, 1) for any interval I ⊂ R.9 Using I =

[−qα, qα] with qα = Φ−1(1− α/2) we end up10 with

Pθ
{
θ ∈

[
θ̂n ± qα

√
θ(1− θ)

n

]}
→ 1− α. (2.9)

This is interesting, but not enough to build a confidence interval, since
the interval in (2.9) depends on θ through the variance term θ(1 −
θ). Indeed, a confidence interval must be something that does not
depend on θ. We need to work a little bit more in order to remove the
dependence on θ from this interval. We can do the same as before: we
use the fact that θ(1− θ) ≤ 1/4 for any θ ∈ [0, 1], so that

lim inf
n

Pθ
{
θ ∈

[
θ̂n ±

qα
2
√
n

]}
≥ 1− α. (2.10)

This is what we call a confidence interval asymptotically of level 1− α
constructed by excess.

In the asymptotic confidence interval (2.10), we used the central limit
theorem to approximate the distribution of

√
n(Sn/n− θ) by a Gaus-

sian distribution. This requires n to be “large enough”, but the central
limit theorem does not tell us how large. We can quantify this better
by assessing how close the distribution function of

√
n(Sn/n − θ)

is to the one of the Gaussian distribution, using the following theo-
rem.

Theorem 2.2 (Berry-Esséen) Let X1, . . . , Xn be i.i.d random vari-
ables such that E[Xi] = 0 and V[Xi] = σ2 and introduce the distri-
bution function

Fn(x) = P
[∑n

i=1Xi√
nσ2

≤ x
]
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for any x ∈ R. Then, the following inequality holds:

sup
x∈R
|Fn(x)− Φ(x)| ≤ cκ

σ3
√
n
,

where κ = E|X1|3 (assumed finite) and where c is a purely numeri-
cal constant (the best known one is c = 0.4748).

The best known constant c = 0.4748

is from [6], which almost matches the
lower bound c ≥ 0.4097 from [7]. Note
also that a similar result holds if the Xi
are independent but not identically dis-
tributed.

A nice proof of this theorem with worse constants, which relies on
Fourier analysis and approximation by Schwartz functions, can be
found in [8] [8]: Tao (2010), 254A, Notes 2: The

central limit theorem
. For Bernoulli we have E|X1|3 = θ and σ3 = (θ(1 −

θ))3/2 so that

|Fn(x)− Φ(x)| ≤ 3√
nθ(1− θ)3

which shows that the approximation by the Gaussian distribution dete-
riorates whenever θ is close to 0 or 1, which is expected since in this
case the sequence X1, . . . , Xn is almost deterministically constant and
equal to 0 (when θ ≈ 0) or 1 (when θ ≈ 1).

Reparametrization. Another tool used in the construction of confi-
dence intervals with asymptotic coverage is the idea of reparametriza-
tion. Indeed, given a statistical model {Pθ : θ ∈ Θ} and a bijective
function g : Θ → Λ we can use instead the “reparametrized”model
{Qλ : λ ∈ Λ} where Qλ = Pg−1(λ) for which the construction of a
confidence interval [λ̂L, λ̂R] for λ is easier. If g is a monotonic function,
we can easily derive from [λ̂L, λ̂R] a confidence interval for θ.

In order to use this reparametrization idea, a natural question is to
understand if the convergence in distribution (involved in the central
limit theorem) is stable under such a reparametrization.

Example 2.1 Consider a iid dataset X1, . . . , Xn with distribution
Exponential(θ) with scale parameter θ > 0, namely the distribution
Pθ(dx) = θe−θx1x≥0dx. We have E(X1) = 1/θ and V(X1) =

1/θ2, so that using the law of large numbers and the central limit
theorem we have We recall that X̄n = n−1∑n

i=1 Xi.

X̄n
as→ θ−1 and

√
n(X̄n − θ−1) Normal(0, θ−2)

when n → +∞. Since x 7→ 1/x is a continuous function on
(0,+∞), we know that (X̄n)−1 as→ θ so that a strongly consistent
estimator is given by θ̂n = (X̄n)−1. But what can be said about the
convergence in distribution of

√
n(θ̂n − θ)?

This is answered by so-called ∆-method, described in the next theo-
rem.
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11: This theorem will be very useful for
the study of limit distributions. For in-
stance, it entails that Zn

P→ z whenever√
n(Zn − z) converges in distribution,

and particular cases such asXn+Yn  
Xn + y and XnYn  Xny will be
used repeatedly, starting with the proof
of Theorem 2.3 for instance.

12: Be careful with the convergence in
distribution. Please keep in mind that
this mode of convergence is about the
convergence of the distributions and not
the convergence of the random vari-
ables (hence its name). The notation
Xn  X is rather misleading but con-
venient. In particular, nothing can be
said in general about f(Xn, Yn) when
we know that Xn  X and Yn  Y

(unless Xn and Yn are independent se-
quences).

Theorem 2.3 (∆-method) Let (Zn)n≥1 be a sequence of real random
variables and assume that an(Zn − z)  Z, where (an)n≥1 is a
positive sequence such that an → +∞, where z ∈ R and where Z is
a real random variable. If g is a function defined on a neighborhood
of z and differentiable at z, we have

an(g(Zn)− g(z)) g′(z)Z (2.11)

as n→ +∞.

The proof of Theorem 2.3 is given in Section 2.4. It holds also for a
sequence (Zn) of random vectors in Rd and a differentiable function
g : Rd → Rd′ , and it reads in this case

an(g(Zn)− g(z)) Jg(z)Z, (2.12)

where Jg(z) is the Jacobian matrix of g at z. A particularly use-
ful case is when Z is Gaussian. For instance, if

√
n(θ̂n − θ)  

Normal(0, σ(θ)2), we have

√
n(g(θ̂n)− g(θ)) Normal(0, σ(θ)2(g′(θ))2)

whenever g satisfies the conditions of Theorem 2.3. Going back to the
Exponential(θ) case of Example 2.1, we obtain with g(x) = 1/x and
since θ̂n = g(X̄n) that

√
n(θ̂n − θ) Normal(0, θ2).

Another result which provides stability for the convergence in distri-
bution under a smooth mapping is the so-called Slutsky theorem.11

Theorem 2.4 (Slutsky) Let (Xn)n≥1 and (Yn)n≥1 be sequences of
random vectors in Rd and Rd′ respectively, such that Xn  X

and Yn  y where X ∈ Rd is some random vector and y ∈ Rd′ .
Then, we have that Yn

P→ y and (Xn, Yn)  (X, y) as n → +∞.
In particular, we have f(Xn, Yn)  f(X, y) for any continuous
function f .

The proof of Theorem 2.4 is given in Section 2.4 below. The ∆-method
provides stability for the convergence in distribution when a differ-
entiable function is applied to a sequence, while the Slutsky theorem
provides “algebraic” stability when combining two sequences converg-
ing respectively in distribution and probability. 12

Back again to Bernoulli. We have θ̂n
P→ θ, so that (θ̂n(1−θ̂n))1/2 P→

(θ(1− θ))1/2 since x 7→ (x(1− x))1/2 is continuous on [0, 1] and let
us write

√
n(θ̂n − θ)√
θ̂n(1− θ̂n)

=

√
n(θ̂n − θ)√
θ(1− θ)

×
√

θ(1− θ)
θ̂n(1− θ̂n)

=: An ×Bn.
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13: With f(x, y) = xy.

14: With 1000 tosses and 420 heads,
the realization of this confidence inter-
val at level 95% is [0.38, 0.45].

We know that An  Normal(0, 1) and that Bn
P→ 1. Therefore, using

Theorem 2.4 leads13 to√
n

θ̂n(1− θ̂n)
(θ̂n − θ) Normal(0, 1).

We just replaced θ by θ̂n in the variance term θ(1−θ) of the limit (2.8),
but doing so required Slutsky’s theorem to prove this rigorously, and
this provides us another confidence interval with asymptotic coverage
given by

Pθ
{
θ ∈

[
θ̂n ± qα

√
θ̂n(1− θ̂n)

n

]}
→ 1− α

as n→ +∞.14

2.3 Tests

Let us consider, again, in this section, a statistical experiment with
data X and model {Pθ : θ ∈ Θ}. Here, we want to decide between to
hypotheses H0 and H1, where

Hi means that θ ∈ Θi

for i ∈ {0, 1}, where {Θ0,Θ1} is a partition of the set of parameters Θ.
In order to understand the concept of statistical testing, let us consider
the following unsettling example: imagine that you need to decide if
a patient has cancer or not. The patient has cancer if some parameter
θ ∈ (0, 1) about him satisfies θ ≥ 0.42. We choose Θ0 = [0.42, 1] and
Θ1 = [0, 0.42), namely we decide that H0 means that the patient has
cancer, while H1 means that the patient has not. We need to construct
a testing function ϕ : E → {0, 1} that maps X 7→ ϕ(X), our decision
being given by the value of ϕ(X). The convention is to decide that
H0 is true whenever ϕ(X) = 0, in this case we say that we accept
H0 and we reject H0 whenever ϕ(X) = 1. The convention is with the
“1” in ϕ(X) = 1 and H1 which always means that we reject the null
hypothesis H0.

2.3.1 Type I and Type II errors

When θ ∈ Θi, we are correct ifϕ(X) = i and incorrect ifϕ(X) = 1−i.
We have two types of errors: the Type-I error, also called the first-order
error, given by

Pθ[ϕ(X) = 1] = Eθ[ϕ(X)] for θ ∈ Θ0 (2.13)
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15: Of course this morbid example is
highly unrealistic, and is used only to
stress the asymmetry of errors in a sta-
tistical testing problem.

and the Type-II error, also called second-order error, given by

Pθ[ϕ(X) = 0] = 1− Eθ[ϕ(X)] for θ ∈ Θ1. (2.14)

For the cancer detection problem, the Type I error corresponds to the
probability of saying to the patient that he has not cancer while he
has. The Type II error corresponds to the probability of saying to the
patient that he has cancer while he has not. Note that these two types
of errors are not symmetrical: we consider that the first one is more
serious than the second (although this can be debated, the patient could
do a depression, or start an invasive treatment for nothing).15 The
important point here is that H0 and H1 must be chosen depending
on the practical application considered. They are not given and they
correspond to an important modeling choice. We will see below thatH0

and H1 must be chosen, in practice, so that the corresponding Type I
error is more serious, for the considered application, than the Type II
error.

Definition 2.4 The function β : Θ→ [0, 1] that maps θ 7→ β(θ) =

Eθ[ϕ(X)] is called the power function of the test ϕ.

Ideally, we would like both the Type I and Type II errors to be small,
namely β(θ) ≈ 0 for θ ∈ Θ0 and β(θ) ≈ 1 for θ ∈ Θ1. But this is
impossible: if Θ is a connected set then Θ0 and Θ1 share a common
frontier, so that β must be discontinuous on it, while β is in general a
continuous function. Therefore, it is hard to make both the Type I and
Type II errors small at the same time.

2.3.2 Desymmetrization of statistical tests

The way a statistical test is performed is through the Neyman-Pearson
approach, where we desymmetrize the problem: choose the hypothesis
H0 using common sense, so that the Type I error is more serious than
the Type II error. The Type I error is always the rejection of H0 when
it is true, while the Type II error is always the acceptation of H0 when
it is false. The only thing that we choose is what are H0 and H1. Let
us wrap up what we said before, and introduce some extra things in the
next definition.

Definition 2.5 Consider a statistical testing problem with hypotheses

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

and a testing function ϕ : E → {0, 1}. We call H0 the null hypothe-
sis and H1 the alternative hypothesis. When ϕ(X) = 0 we say that
the test accepts H0 or simply that it accepts. When ϕ(X) = 1 the
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16: It is very easy to build a statisti-
cal test with α = 0, namely with zero
Type I error. For the cancer example
from above, we just need to tell to all
the patient that they have cancer. By do-
ing so, we never miss any cancer diag-
nostic, but on the other hand this test
has zero power. Arguably, this is not a
good strategy, so we need to give some
slack in the construction of the test by
considering a small but non-zero α.

test rejects. The set The random variable X is valued in a
measurable space (E, E).

R = {x ∈ E : ϕ(x) = 1}

is called the rejection set of the test ϕ, and we call its complement
R{ the acceptation region. The restriction β : Θ0 → [0, 1] of the
power function β from Definition 2.4 is called the Type I error, while
the restriction β : Θ1 → [0, 1] is called the power of the test. The
function 1 − β : Θ1 → [0, 1] is called the Type II error or second
order error. Whenever

sup
θ∈Θ0

β(θ) ≤ α

for some fixed α ∈ (0, 1), we say that the test has level α.

The idea of desymmetrization is as follows: given a level α ∈ (0, 1)

(something like 1%, 5% or 10%) we build a test so that it has, by
construction, level α. Namely, a test is built so that the Type I error is
controlled, while nothing is done directly about the Type II error. Given
two statistical tests with level α (namely Type I error ≤ α), we can
simply compare their Type II error and choose the one that maximizes
it.

Back to Bernoulli. Let us go back to the Bernoulli model where
X1, . . . , Xn are iid and distributed as Bernoulli(θ). We consider the
problem of statistical testing with hypotheses:

H0 : θ ≤ θ0 against H1 : θ > θ0 (2.15)

so that Θ = (0, 1), Θ0 = (0, θ0] and Θ1 = (θ0, 1). We studied in
Sections 2.1 and 2.2 the estimator θ̂n = Sn/n = X̄n and know that it
is a good estimator. A natural idea is therefore to reject H0 if θ̂n is too
large.

Recipe

We build a test by defining its rejection set R. The shape of the
rejection set can be easily guessed by looking at the alternative
hypothesis H1.

Since we want to reject when θ > θ0, we want to consider a rejection
set R = {θ̂n > c} for some constant c chosen so that the Type I error
is controlled by α. Note that choosing c = θ0 is a bad idea: using
the central limit theorem, we see that Pθ0 [θ̂n > θ0] → 1/2. We need
to increase c by some amount, so that the Type I error can be indeed
smaller than α.16
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17: We write “under Pθ” here since
Type I error control must be performed
under the null assumption θ ≤ θ0, so
that we must specify under which dis-
tribution (which parameter θ) we are
working at this point.

18: The notation P[Binomial(n, θ) >

nc] stands for P[B > nc] where B ∼
Binomial(n, θ). Note also that we re-
placed Pθ simply by P herein, the no-
tation Pθ is required when we need
to stress that the computation is per-
formed under Pθ , while in the last equal-
ity we consider a generic probability
space with probability P on which B
lives, the dependency on θ is now only
through the distribution of it. These se-
mantics are important and will prove
useful for statistical computations.

20: This comes from the fact that
P[F−P (U) ≤ x] = P[U ≤ FP (x)] =

FP (x) since U ∼ Uniform([0, 1]) and
since, by construction of the general-
ized inverse, we have that F−P (u) ≤ x

is equivalent to u ≤ FP (x) for any
u ∈ [0, 1] and x ∈ R.

2.3.3 Stochastic domination

We understand at this point that c will depend on α, θ0 and the sample
size n, among other things, and that in view of Definition 2.5 it needs to
be such that supθ≤θ0 β(θ) = supθ≤θ0 Pθ[θ̂n > c] ≤ α. But, we know
that nθ̂n = Sn ∼ Binomial(n, θ) under Pθ17 , so that

β(θ) = Pθ[Sn > nc] = P[Binomial(n, θ) > nc] (2.16)

for any θ ∈ (0, 1).18 In order to control the supremum of β, we need
to study its variations: in view of (2.16) and (2.7), we know that

β(θ) = 1− Fn,θ(nc) = 1−
[nc]∑
k=0

(
n

k

)
θk(1− θ)n−k (2.17)

for nc ∈ [0, n], where [x] stands for the integer part of x ≥ 0, so that a
direct study of the variations of β is somewhat tedious. Intuitively, β(θ)

should be increasing with θ, since when θ increases, we get more ones,
so that Sn increases. This can be nicely formalized using the notion of
stochastic domination.

Proposition 2.5 Let P and Q be two probability measures on the
same real probability space. We say that Q stochastically dominates
P , that we denote P � Q, whenever one of the following equivalent
points is granted:

1. There are two real random variables X ∼ P and Y ∼ Q (on
the same probability space) such that P[X ≤ Y ] = 1;

2. We have FP (x) ≥ FQ(x) for any x ∈ R, where FP and
FQ are the distribution functions of P and Q, or equivalently,
P [(x,+∞)] ≤ Q[(x,+∞)] for any x ∈ R;

We recall that the distribution function
of P is FP (x) = P [(−∞, x]].

3. We have F−P (p) ≤ F−Q (p) for any p ∈ [0, 1] where F−P (p) =

inf{x ∈ R : FP (x) ≥ p} is the generalized inverse of FP or
quantile function of P ;

Since a distribution function is non-
decreasing and càdlàg, its generalized
inverse is well-defined and unique. See
the proof of Proposition 2.5 for more
details about it.4. For any non-decreasing and bounded function f we have∫

fdP ≤
∫
fdQ.

The proof of Proposition 2.5 is given in Section 2.4 below and follows
rather standard arguments. However, the proof of (3)⇒ (1) deserves
to be discussed here, since it uses a simple yet beautiful coupling ar-
gument, which is a very powerful technique often used in probability
theory [9] [9]: Hollander (2012), ‘Probability

theory: The coupling method’
. More precisely, we use something called a “quantile cou-

pling”: consider a random variable U ∼ Uniform([0, 1])19

19: We say that X ∼ Uniform([a, b])

for a < b if it has density x 7→
(b − a)−11[a,b](x) with respect to the
Lebesgue measure, namely PX(dx) =

(b− a)−11[a,b](x)dx.

on some
probability space and define X = F−P (U) and Y = F−Q (U). We have
by construction20 that X ∼ P and Y ∼ Q, and that

P[X ≤ Y ] = P[F−P (U) ≤ F−Q (U)] = 1

since Point 3 tells us that F−P (p) ≤ F−Q (p) for any p ∈ [0, 1]. This
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proves Point 3⇒ Point 1.

The really nice feature of Proposition 2.5 is that it allows to reformulate
P � Q, which is a property regarding the distributions P and Q, as a
property about random variables X ∼ P and Y ∼ Q. Let us provide
two examples.

Example 2.2 Whenever λ1 ≤ λ2, we have Exponential(λ2) �
Exponential(λ1). This follows very easily from Point 2 of Proposi-
tion 2.5.

Example 2.3 Whenever θ1 ≤ θ2, we have Bernoulli(n, θ1) �
Bernoulli(n, θ2). This is obtained through Point 1 (namely a cou-
pling argument).

The notation #E stands for the cardi-
nality of a set E.

Consider U1, . . . , Un iid Uniform([0, 1]) and de-
fine Sn,i = #{k : Uk ≤ θi} for i ∈ {1, 2}. By construction we have
Sn,i ∼ Binomial(n, θi), and obviously P[Sn,1 ≤ Sn,2] = 1 since
θ1 ≤ θ2.

Thanks to Example 2.3 together with Proposition 2.5, we know now
that Fn,θ2 ≤ Fn,θ1 whenever θ1 ≤ θ2, so that combined with Inequal-
ity (2.16) this provides the following control of the Type I error:

sup
θ≤θ0

Pθ[θ̂n > c] = sup
θ≤θ0

(1− Fn,θ(nc)) ≤ 1− Fn,θ0(nc).

We can find out, given θ0, α and n, a constant c as small as possible
that satisfies Fn,θ0(nc) ≥ 1 − α, like we did in Section 2.2 for the
exact confidence interval. Otherwise, we can use Theorem 2.1 (but it
leads to a slightly less powerful test) to obtain

Pθ0 [θ̂n > c] = Pθ0 [Sn − nθ0 > c′] ≤ e−2c′2/n = α,

so that choosing c′ =
√
n log(1/α)/2 gives supθ≤θ0 β(θ) ≤ α, and

proves that the test with rejection set

R =

{
θ̂n ≥ θ0 +

√
log(1/α)

2n

}
is a test of level α for the hypotheses (2.15). Note that we managed to
quantify exactly by how much we need to increase θ0 in order to tune
the test so that its Type I error is smaller than α.

2.3.4 Asymptotic approach

We can use also an asymptotic approach by considering the test with
rejection set

R =
{
θ̂n > θ0 + δn

}
where δn :=

√
θ0(1− θ0)

n
Φ−1(1− α).
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Indeed, we know by combining Example 2.3 together with (2.8) that
for any θ ≤ θ0 we have

Pθ[θ̂n > θ0 + δn] ≤ Pθ0 [θ̂n > θ0 + δn]→ α

as n→ +∞, so that lim supn supθ≤θ0 Pθ[θ̂n > θ0 + δn] ≤ α, which
provides an asymptotic control of the Type I error of this test: we say
that it is asymptotically of level α. But what can be said about the
power of the test ? We know that θ̂n

as→ θ under Pθ and that δn → 0,
so, under H1, namely whenever θ > θ0, we have

β(θ) = Pθ[θ̂n > θ0 + δn]→ 1

as n→ +∞, which claims that the power of the test goes to 1. In this
case, we say that the test is consistent or convergent.

Remark 2.2 The convergence of β(θ) is not uniform in θ since its
limit is discontinuous while β(θ) is continuous (see Equation (2.17)).

2.3.5 Ancillary statistics

An interesting pattern emerges from what we did for confidence in-
tervals and tests. In both cases, for the Bernoulli case, we constructed
a statistic

√
n(θ̂n − θ)/

√
θ(1− θ) whose asymptotic distribution is

Normal(0, 1), namely a distribution that does not depend on the param-
eter θ. This is called an asymptotically ancillary statistic.

Definition 2.6 Whenever X ∼ Pθ and the distribution of fθ(X)

does not depend on θ, we say that fθ(X) is an ancillary statistic.

The construction of confidence intervals and tests requires such an an-
cillary or asymptotically ancillary statistic. Indeed, we need to remove
the dependence on θ from the distribution in order to compute quantiles
allowing to tune the coverage property of a confidence interval, or the
level of a test.

2.3.6 Confidence intervals and tests

There is of course a strong connection between confidence intervals
and tests, as explained in the following proposition.

Proposition 2.6 If S(X) is a confidence set of level 1− α, namely
Pθ[θ ∈ S(X)] ≥ 1− α for any θ ∈ Θ, then the test with rejection
set {x : S(x) ∩Θ0 = ∅} is of level α.

This proposition easily follows from the fact that Pθ[S(X) ∩ Θ0 =

∅] ≤ Pθ[θ /∈ S(X)] ≤ α for any θ ∈ Θ0. Confidence intervals and
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21: tests with maximum power, in
some sense

22: Once again, the only way to build
a test with α = 0 is to never reject (tell
all the patients that they have cancer).

tests are therefore deeply intertwined notions in the sense that when
you have built one of the two, you can build easily the other.

Types of hypotheses. For Θ ⊂ R, we often consider one of the null
hypotheses listed in Table 2.1, where we provide some vocabulary.

Θ0 = {θ0} Simple hypothesis
Θ0 = [θ0,+∞)

Multiple hypothesis One-sided hypothesis
Θ0 = (−∞,Θ0]
Θ0 = [θ0 − δ, θ0 + δ] Two-sided hypothesis

Table 2.1: Some examples of standard
null hypotheses.

A test with a one-sided null hypothesis can be obtained using a one-
sided confidence interval in the opposite direction of Θ0. A test with
a two-sided null hypothesis can be obtained using a (two-sided) con-
fidence interval. For hypotheses H0 : θ = θ0 versus H1 : θ > θ0 we
use R = {θ̂n > θ0 + c} while for H0 : θ = θ0 versus H1 : θ 6= θ0 we
use R = {|θ̂n − θ0| > c}, where θ̂n is some estimator of θ and where
c is a constant to be tuned so that the test has level α. Note that this is
a generic recipe, that holds for any statistical model.

In Chapter ?? below, we provide systematic rules to build optimal
tests21 in a fairly general setting, but this will require some extra
concepts that we will be developed later.

2.3.7 p-values

Consider a statistical model and a test at level α, and keep everything
fixed but α. If α is very small, the test has no choice but to accept H0,
since it has almost no slack to eventually be wrong about it.22 With
everything fixed but α, we can expect that for some value α(X) (that
depends on the data X), we have that whenever α < α(X) then the
test accepts H0 while when α > α(X) the test rejects H0. Such a
value α(X) is called the p-value of the test.

Let Rα be the rejection set of some test at level α, so that it satisfies
supθ∈Θ0

Pθ[Rα] ≤ α < α′ for any α′ > α, which means that Rα also
is a rejection set at level α′. Usually, the family {Rα}α∈[0,1] of rejection
sets of a test is increasing with respect to α, namely Rα ⊂ Rα′ for any
α < α′. In this case, we can define the p-value as follows.

Definition 2.7 Consider a statistical experiment with data X and
a statistical test with an increasing family {Rα}α∈[0,1] of rejection
sets. The p-value of such a test the random variable given by

α(X) = inf{α ∈ [0, 1] : X ∈ Rα}.
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Let us compute the p-value of one of the tests we built previously for
the Bernoulli(θ) model and the hypotheses (2.15). The rejection set is
given by

Rα =

{
θ̂n > θ0 + Φ−1(1− α)

√
θ0(1− θ0)

n

}
so that the p-value can be computed as follows:

α(X) = inf

{
α ∈ [0, 1] : θ̂n > θ0 + θ0 + Φ−1(1− α)

√
θ0(1− θ0)

n

}
= 1− Φ

(√ n

θ0(1− θ0)
(θ̂n − θ0)

)
In practice, when performing a statistical testing procedure, we do not
choose the level α, but we compute the p-value using the definition
of the test and the data. A statistical library will never ask you α but
will rather give you the value of the p-value. This value quantifies,
somehow, how much we are willing to believe in H0. For instance, if
α(x) ≤ 10−3 x stands for the realization of the ran-

dom variable X , namely x = X(ω)
then we are strongly rejecting H0, since it would require

a level α < 10−3 to accept H0, which is very small. If α(x) = 3%,
the result of the test is rather ambiguous while α(x) = 30% is a strong
acceptation of H0.

In many sciences, in order to publish conclusions based on experimen-
tal observations, researchers must exhibit the p-values of the considered
statistical tests in order to justify that some effect is indeed observed.
However, the reign of the p-value in many fields of science is highly
criticized, see for instance [10] [10]: Wasserstein et al. (2019), ‘Moving

to a World Beyond p < 0.05’
.

2.4 Proofs

Proof of Theorem 2.1. We follow the proof from [11] [11]: Massart (2007), Concentration
inequalities and model selection

. First, we
can assume without loss of generality that each Xi is centered: it does
not change the length bi − ai of the interval containing Xi almost
surely. We use the Cramér-Chernoff method: because of the Markov’s
inequality, we have

P[S ≥ t] = P[eλS ≥ eλt] ≤ e−λtE[eλS ]

for any λ > 0. Now, denoting by ψS(λ) = logE[eλS ] the log of the
moment generating function of S =

∑n
i=1Xi, we have thanks to the

independence of X1, . . . , Xn that

ψS(λ) = logE[eλ
∑n
i=1 Xi ] =

n∑
i=1

logE[eλXi ] =

n∑
i=1

ψXi(λ),
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23: Just remark that |Y − (a+ b)/2| ≤
(b− a)/2 and that V[Y ] = V[Y − (a+

b)/2] ≤ (b− a)2/4.

24: Integration and the facts that
ψX(0) = 0 and that ψ′X(0) = 0 since
X is centered.

so that we need to control ψXi(λ). Consider a centered random variable
X such that X ∈ [a, b] almost surely and let us prove that

ψX(λ) ≤ (b− a)2λ2

8
, (2.18)

which is a result known as the Hoeffding lemma. Note also that if Y is
any random variable such that Y ∈ [a, b] almost surely, then23

V[Y ] ≤ (b− a)2

4
. (2.19)

Then, denote as P the distribution ofX and introduce the distribution

Pλ(dx) = e−ψX(λ)eλxP (dx),

so that if Xλ is a random variable with distribution Pλ we have
E[φ(Xλ)] = E[φ(X)e−ψX(λ)eλX ]. An easy computations gives that
the second derivative of ψX satisfies

ψ′′X(λ) = e−ψX(λ)E[X2eλX ]− e−2ψX(λ)(E[XeλX ])2 = V[Xλ].

But, sinceXλ ∈ [a, b] almost surely, we have using (2.19) thatψ′′X(λ) ≤
(b − a)2/4, so that integration proves (2.18).24 Most of the work is
done now, since wrapping up the inequalities from above gives

P[S ≥ t] ≤ exp
(
− λt+

λ2

8

n∑
i=1

(bi − ai)2
)

for any λ > 0: minimizing the right-hand side with respect to λ allows
to conclude for the optimal choice λ = 4t/

∑n
i=1(bi − ai)2.

Prof of Theorem 2.3. Consider the neighborhood V of z and define
r(h) = (g(z + h)− g(z))/h− g′(z) for h 6= 0 such that z + h ∈ V
and put r(0) = 0. We know that r(h)→ 0 as h→ 0. By definition of
r we have

g(z + h) = g(z) + hg′(z) + hr(h),

so putting h = Zn − z gives

an(g(Zn)−g(z)) = ang
′(z)(Zn−z)+an(Zn−z)r(Zn−z). (2.20)

Now, we need to use Theorem 2.4 (Slutsky) several times. First, we
have Zn − z = a−1

n an(Zn − z), so that Zn − z
P→ 0 since a−1

n → 0

and an(Zn − z)  Z, so that r(Zn − z)
P→ 0. Second, using again

Theorem 2.4, we have an(Zn − z)r(Zn − z)
P→ 0 since an(Zn −

z)  Z and r(Zn − z)
P→ 0. Finally, this allows to conclude that

an(g(Zn)−g(z)) g′(z)Z because of (2.20) combined with an(Zn−
z)r(Zn − z)

P→ 0 and Theorem 2.4. �
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Prof of Theorem 2.4. Let us first prove that since Yn  y with y
deterministic, we actually have that Yn

P→ y. Indeed, since Yn  y

we have that E[φ(Yn)] → E[φ(y)] for any continuous and bounded
function φ, for instance φ(x) = ‖x − y‖/(‖x − y‖ + 1) so that we
know that

E
[ ‖Yn − y‖
‖Yn − y‖+ 1

]
→ 0.

Now, we can conclude with the Markov’s inequality, since x 7→ x/(x+

1) is increasing on (0,+∞):

P
[
‖Yn − y‖ ≥ ε

]
= P

[ ‖Yn − y‖
‖Yn − y‖+ 1

≥ ε

1 + ε

]
≤ 1 + ε

ε
E
[ ‖Yn − y‖
‖Yn − y‖+ 1

]
→ 0,

which proves Yn
P→ y. Now, let us prove that (Xn, Yn)  (X, y).

Thanks to the Portemanteau theorem, we know that it suffices to prove
that E[φ(Xn, Yn)]→ E[φ(X, y)] for any function φ : Rd × Rd′ → R
which is Lipschitz and bounded. We have

E
[
|φ(Xn, Yn)− φ(X, y)|

]
≤ E

[
|φ(Xn, Yn)− φ(Xn, y)|

]
+ E

[
|φ(Xn, y)− φ(X, y)|

]
and we already know that E

[
|φ(Xn, y)− φ(X, y)|

]
→ 0 since Xn  

X . Moreover, we have

|φ(Xn, Yn)− φ(Xn, y)| ≤ 2b1‖Yn−y‖>ε + Lε

for any ε > 0, where we used the fact that φ is bounded by b and where
L is the Lipschitz constant of φ. This entails

E
[
|φ(Xn, Yn)− φ(Xn, y)|

]
≤ 2bP[‖Yn − y‖ > ε] + Lε,

which allows to conclude since Yn
P→ y, so that P[‖Yn − y‖ > ε]→ 0.

Finally, f(Xn, Yn)  f(X, y) for any continuous function f , since
we know that E[φ(f(Xn, Yn))]→ E[φ(f(X, y))] for any continuous
and bounded function φ, since φ ◦ f is itself continuous and bounded,
and since (Xn, Yn) (X, y). �

Proof of Proposition 2.5. We already know that Point (3)⇒ Point (1).
We have Point (2)⇒ Point (3) since Point (2) entails that {x ∈ R :

FQ(x) ≥ p} ⊂ {x ∈ R : FP (x) ≥ p} for any p ∈ [0, 1], so that
F−1
P (p) ≤ F−1

Q (p) by definition of the generalized inverse. We have
easily Point (4)⇒ Point (2) by choosing fx(t) = 1(x,+∞)(t), which is
a non-decreasing and bounded function, so that

P [(x,+∞)] =

∫
fxdP ≤

∫
fxdQ = Q[(x,+∞)].
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Finally, Point (1)⇒ Point (4) by taking X ∼ P and Y ∼ Q such that
X ≤ Y almost surely, so that∫

fdP = E[f(X)] = E[f(X)1X≤Y ] ≤ E[f(Y )] =

∫
fdQ

for any non-decreasing function f . �
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We observe iid pairs (X1, Y1), . . . , (Xn, Yn) where Xi ∈ Rd and Yi ∈
R. We want to learn to predict Yi from Xi, namely we want to regress
Yi on Xi. We know that the closest X1-measurable function which is
the closest from Y1 in L2 is the conditional expectation E[Y1|X1] =

f(X1) for some measurable function f , but we do not know the joint
distribution of (X1, Y1), so we don’t know f . Therefore, we want to
use the observations (Xi, Yi) for i = 1, . . . , n in order to build some
approximation of f .

What kind of functions should we consider ? We can consider the
simplest non-constant function Rd → R that we can think of, which
is naturally a linear function x 7→ x>w + b, hence the name linear
regression model.

Features engineering

Considering only linear functions is of course very limiting. But
let us stress that, in practice, we can do whatever we want with the
data (X1, Y1), . . . , (Xn, Yn). A linear model is typically trained on
mappings of Xi, that can include non-linear mappings, such as a
polynomial mapping, that includes all the pairwise products leading
to d(d − 1)/2 extra coordinates, etc. It is uncommon (and suspi-
cious) to work directly with the raw vectors of featuresX1, . . . , Xn:
a lot of effort is usually put on the construction of a mapping, that
requires knowledge about the data itself. The construction of such
a features mapping

The problem considered here is also
known as an instance of supervised
learning with vectors of features Xi ∈
Rd and labels Yi ∈ R.is called feature engineering in statistics and

machine learning, and is more an art than a science. Many indus-
trial large scale problems Large scale means that both n and d are

large, when n is large and n � d we
are considering big data while when d
is large and d� n we work with high-
dimensional data.

(such as web-display advertisement) are
handled using simple linear models, but on highly tested and engi-
neered feature mappings. We won’t discuss this in this chapter, and
will assume that Xi are well-crafted vectors of features on which
we want to train a linear model.

Training a linear model means learning the model weights w ∈ Rd and
the intercept or population bias b ∈ R. To simplify notations we will
forget about the intercept from now on, since without loss of generality
we can simply put θ = [1 w>]> and replace Xi by [1 X>i ]> (and d by
d+ 1).
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1: Such a minimizer is not necessarily
unique, as explained below

V

y•

X θ̂n
X u• •

Figure 3.1: Geometric explanation of
the normal Equation (3.3) where V =
span(X)

2: However, from an algorithmic point
of view, note that θ̂n is usually not
computed by solving the linear system,
but instead by using an optimization al-
gorithm to minimize the convex func-
tion F .

3.1 Ordinary least squares estimator

A linear model assumes that

Yi = X>i θ + εi

for i = 1, . . . , n, where θ ∈ Rd must be trained using the data
(X1, Y1), . . . , (Xn, Yn) and where the random variables εi are called
noise, and are assumed to satisfy E[εi|Xi] = 0. Also, we will assume
from now on that (X1, Y1), . . . , (Xn, Yn) is iid. Let us also consider an
independent pair (X,Y ) with the same distribution. We want to answer
to the question: how can we estimate or train θ? A natural idea is to find
θ̂n ∈ Rd such that X>i θ̂n is close to Yi for each i = 1, . . . , n. The sim-
plest way to measure this closeness is to use the Euclidean distance on
Rn. Let us first introduce the vector of labels y = [Y1 · · ·Yn]> ∈ Rn A vector in Rn is written as a column

matrix with shape n× 1 and the norm
‖ · ‖ stands for the Euclidean norm. We
will write inner products between same-
shaped vectors as u>v or 〈u, v〉 depend-
ing on what is more convenient.

and the features matrix

X =

X1,1 · · · X1,d
...

. . .
...

Xn,1 · · · Xn,d

 =

X
>
1
...

X>n

 =
[
X1 · · ·Xd

]
∈ Rn×d,

so that Xi ∈ Rd is the i-th row of the features matrix while Xj ∈
Rn is the j-th column. We introduce also the vector of noise ε =

[ε1 · · · εn]> ∈ Rn. A least squares estimator or ordinary least squares
estimator is defined as

θ̂n ∈ argmin
t∈Rd

‖y−X t‖2 = argmin
t∈Rd

n∑
i=1

(Yi −X>i t)2, (3.1)

namely, we consider a vector θ̂n that minimizes1 the function

F (t) = ‖y−X t‖2. (3.2)

How can we characterize θ̂n? The definition of θ̂n given by Equa-
tion (3.1) entails that

X θ̂n = projV (y),

where projV is the orthogonal projection operator onto V = {X u :

u ∈ Rd} = span(X) = span(X1, . . . , Xd), the linear space in Rn

which is spanned by the columns of X . This means that y−X θ̂n ⊥ V ,
namely

〈X u,y−X θ̂n〉 = u>X>(y−X θ̂n) = 0

for any u ∈ Rd, which is equivalent to the so-called normal equation

X>X θ̂n = X> y . (3.3)

This means that θ̂n is a solution to linear system (3.3).2 Another
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3: since its Hessian matrix is positive
semidefinite:∇2F (t) = X>X < 0

4: it is a positive semi-definite ma-
trix since we have u>E[XX>]u =

E[u>XX>u] = E[(X>u)2] ≥ 0 for
any u ∈ Rd.

explanation leading to the same characterization is to use the fact F
is convex3 and differentiable on Rd, so that a minimizer must satisfy
the first-order condition ∇F (t) = 0 with ∇F (t) = 2X>(X t − y),
leading again to Equation (3.3).

At this point, let us recall that the covariance matrix between two
random vectors U and V (possibly with different dimensions) such
that E‖U‖2 < +∞ and E‖V ‖2 < +∞ is given by

cov[U, V ] = E
[
(U − EU)(V − EV )>

]
and we will denote V[U ] = cov[U,U ] the covariance matrix of U .

The expectation of a vector (or a matrix)
is simply the vector (or matrix) contain-
ing the expectation of each random en-
tries.

Let
us also remark that whenever V = AU + b for some deterministic
matrix A and deterministic vector b, we have that E[V ] = AE[U ] + b

and V[V ] = AV[U ]A>.

From now on, let us assume that E‖X‖2 < +∞ and that E[Y 2] < +∞.
This allows to define the d× d positive semi-definite4 matrix

E[XX>] = (E[XjXk])1≤j,k≤d. (3.4)

We will assume throughout this section that E[XX>] is invertible,
namely that E[XX>] � 0. The next theorem proves that the unique-
ness of the least-squares estimator is equivalent to several equivalent
properties on the distribution PX of X (the distribution of the fea-
tures).

Theorem 3.1 Assume that n ≥ d. The following points about PX
are all equivalent whenever X1, . . . , Xn are independent.

1. For any hyperplane H ⊂ Rd we have P[X ∈ H] = 0, namely
P[X>t = 0] = 0 for any t ∈ Sd−1

where Sd−1 = {u ∈ Rd : ‖u‖ = 1}
2. X>X =

∑n
i=1XiX

>
i � 0 almost surely

3. The least squares estimator is uniquely defined and given by

θ̂n = (X>X)−1 X> y

almost surely.

Also, whenever PX satisfies either of these points, we say that PX is
non-degenerate.

The proof of Theorem 3.1 is given in Section 3.6 below. The non-
degenerate assumption stated in Point 1 means that PX does not put
mass on any hyperplane of Rd. This is a mild assumption: whenever
PX � Lebesgue then this assumption is satisfied, since Lebesgue[H] =

0 for any hyperplane H . In the next section, we provide some first
statistical properties about the least-squares estimator θ̂n, under the
assumption that PX is non-degenerate.
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5: If we want to work with random
X1, . . . , Xn then we just need to re-
place all expectations by conditional ex-
pectation with respect to X1, . . . , Xn.

3.2 Properties of the least squares estimator

In this Section we work under the assumption that X>X � 0 almost
surely (this is Point 2 of Theorem 3.1), namely under the assump-
tion that PX is non-degenerate. So, without loss of generality, and
in order to simplify notations, we consider in this section that X is
deterministic5 and such that X>X � 0, so that ε1, . . . , εn are iid
and such that E[ε] = 0. Furthermore, we assume that the noise is ho-
moscedastic, namely V[εi] = σ2 < +∞, which means V[ε] = σ2 In,
or equivalently that the covariance of ε is isotropic. In this setting, the
least-squares estimator is given by θ̂n = (X>X)−1 X> y so that

Eθ[θ̂n] = (X>X)−1 X> Eθ[y] = (X>X)−1 X>X θ = θ (3.5)

which means that θ̂n is an unbiased estimator. We can write also

Vθ[θ̂n] = Vθ[Ay] = AVθ[y]A> = σ2 AA> = σ2(X>X)−1,

(3.6)
this is because Vθ[y] = Vθ[X θ+ε] =

V[ε] = σ2 In

where we used A = (X>X)−1 X>. In particular, this proves that
the quadratic risk of θ̂n is given by

Eθ‖θ̂n − θ‖2 = σ2 tr[(X>X)−1]. Use ‖θ̂n − θ‖2 = ‖θ̂n − Eθ[θ̂n]‖2 to-
gether with the fact that E‖Z−EZ‖2 =

tr(V[Z]) for a random vector Z such
that E‖Z‖2 < +∞.

Given θ̂n we can build the vector ŷ of predictions and the vector ε̂ of
residuals given by

ŷ := X θ̂n and ε̂ := y−X θ̂n.

Note also that ŷ = projV (y) = H y where

H := X(X>X)−1 X>

is the projection matrix onto V . This matrix is called the hat matrix
because of the equation ŷ = H y: it puts a hat on y. Also, note that

y−ŷ = (In−H)y = (In−H)(X θ + ε) = (In−H) ε (3.7)

since In−H is the projection matrix onto V ⊥ (the orthogonal of V
which is of dimension n− d since X is full rank) and since X θ ∈ V
so that

Eθ‖y−ŷ‖2 = E‖(In−H) ε ‖2 = trV[(In−H) ε] = σ2(n− d),

where we used the fact that (In−H)(In−H)> = In−H and
tr(In−H) = n− d. This proves that the estimator

σ̂2 :=
1

n− d
‖y−ŷ‖2 =

1

n− d
‖y−X θ̂n‖2
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6: Where Ȳn = n−1∑n
i=1 Yi and 1 ∈

Rn is the vector with all entries equal
to 1

7: This is not necessarily good news,
because of the problem of overfitting,
that will be discussed later.

is an unbiased estimator of σ2 known as the least-squares estimator of
the variance.

A quantity often used to quantity the goodness-of-fit of a linear model
is the R2, also known as the coefficient of determination. Assuming
that 1 ∈ span(X), we have by definition of θ̂n that y−X θ̂n ⊥
X θ̂n − Ȳn 1,6 so that

‖y−Ȳn 1 ‖2 = ‖y−X θ̂n‖2 + ‖X θ̂n − Ȳn 1 ‖2

and

0 ≤ R2 :=
‖X θ̂n − Ȳn 1 ‖2

‖y−Ȳn 1 ‖2
= 1− ‖y−X θ̂n‖2

‖y−Ȳn 1 ‖2
≤ 1,

which corresponds to the proportion of the (empirical) variance of y
that is “explained” by the least-squares fit. When R2 is close to 1, then
the linear model fits almost perfectly.7

Now, if we want to go further, we need some extra structure, in partic-
ular if we want to study the distributions of θ̂n and σ̂2. To do so, we
assume in the next section that the noise vector ε is Gaussian.

3.3 Gaussian linear model

We keep the same setting as in Section 3.2 but furthermore assume
that ε1, . . . , εn are iid and that εi ∼ Normal(0, σ2). This means that
ε is a Gaussian vector with multivariate Gaussian distribution ε ∼
Normal(0, σ2 In). Let us start with some reminders about Gaussian
vectors.

Gaussian vectors. We say that a random vector Z ∈ Rn is Gaussian
whenever 〈u, Z〉 is a Gaussian real random variable for any u ∈ Rd.
In this case, we write Z ∼ Normal(µ,Σ) where µ = E[Z] and
Σ = V[Z]. Moreover, if Σ � 0, then Z has density

fZ(z) =
1√

(2π)d det Σ
exp

(
− 1

2
(z − µ)>Σ−1(z − µ)

)
with respect to the Lebesgue measure on Rn. If Z ∼ Normal(0, In),
we say that Z is standard Gaussian and note that in this case A1/2 Z +

b ∼ Normal(b,A) for any matrix A < 0. Also, if Z ∼ Normal(µ,Σ)

where Σ is a diagonal matrix, then the coordinates ofZ are independent.
Note also that if Z ∼ Normal(0, In) and Q is orthonormal then
QZ ∼ Normal(0, In).
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8: The mode is defined, whenever it ex-
ists, as the argmax of the density. It is
therefore a value around which we ex-
pect to see most of the observations.

9: The name “Student” comes from the
use of “Student” as a pen name for a
research paper by W. William Gosset,
a statistician and chemist who worked
on stabilizing the taste of the beer at
the Guiness factory in Dublin (he used
“Student” in order to stay anonymous
and keep secret the use of the t-test at
the factory).

3.3.1 Some classical distributions

In the section, we give some reminders about classical distributions,
that will prove useful for the study of the Gaussian linear model.

Gamma distribution. The Gamma distribution Gamma(a, λ), where
a > 0 is the shape and λ > 0 is the intensity has density

fa,λ(x) =
λa

Γ(a)
xa−1e−λx1x≥0

with respect to the Lebesgue measure on R.

Recall that Γ(a) =
∫ +∞

0
xa−1e−xdx

for a > 0 and that Γ(a+ 1) = aΓ(a).

If G ∼ Gamma(a, λ)

then E[G] = a/λ and V[G] = a/λ2 and mode(G) = (a − 1)/λ if
a > 1.8 Whenever G1 ∼ Gamma(a1, λ) and G2 ∼ Gamma(a2, λ)

are independent random variable, thenG1+G2 ∼ Gamma(a1+a2, λ).
Also, if E1, . . . , En are iid distributed as exp(λ) then

∑n
i=1Ei ∼

Gamma(n, λ).

The Chi-squared distribution. If n ∈ N \ {0} then ChiSq(n) =

Gamma(n/2, 1/2) is called the Chi-squared distribution with n de-
grees of freedom. Although being an instance of the Gamma distribu-
tion, the ChiSq(n) distribution is particularly useful in statistics, in par-
ticular since it is the distribution of ‖Z‖2 where Z ∼ Normal(0, In).
This comes from the fact that Z2

i ∼ Gamma(1/2, 1/2) so that by
independence ‖Z‖2 =

∑n
i=1 Z

2
i ∼ Gamma(n/2, 1/2) = ChiSq(n).

The density of ChiSq(n) is therefore

fn(x) =
2−n/2

Γ(n/2)
xn/2−1e−x/21x≥0

with respect to the Lebesgue measure on R.

The Student’s t distribution. IfU ∼ Normal(0, 1) and V ∼ ChiSq(n)

are independent random variables, then

U√
V/n

∼ Student(n) (3.8)

where Student(n) is called the student distribution with n degrees of
freedom9 which has density

fn(x) =
1√
nπ

Γ((n+ 1)/2)

Γ(n/2)

1

(1 + x2/n)(n+1)/2

with respect to the Lebesgue density on R. If T ∼ Student(n) we
have E[T ] = 0 and V(T ) = n/(n − 2) whenever n > 2. Also, we

have that Student(n)  Normal(0, 1) as n → +∞ since V/n P→ 1

(using the law of large numbers and Theorem 2.4).
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The Fisher distribution. Let p, q ∈ N \ {0}. If U ∼ ChiSq(p) and
V ∼ ChiSq(q) are independent then

U/p

V/q
∼ Fisher(p, q) (3.9)

where Fisher(p, q) stands for the Fisher distribution with density

fp,q(x) =
1

xβ(p/2, q/2)

( px

px+ q

)p/2(
1− px

px+ q

)q/2
1x≥0

with respect to the Lebesgue measure on R, where

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
ta−1(1− t)b−1dt. (3.10)

The Beta distribution. IfG1 ∼ Gamma(a, λ) andG2 ∼ Gamma(b, λ)

are independent then

G1

G1 +G2
∼ Beta(a, b)

where Beta(a, b) is the Beta distribution with density

fa,b(x) =
1

β(a, b)
xa−1(1− x)b−11[0,1](x)

with respect to the Lebesgue measure on R, where the β function
is given by (3.10). If B ∼ Beta(a, b) then E[B] = a

a+b , V[B] =

ab/((a + b)2(a + b + 1)) and mode(B) = (a − 1)/(a + b − 2)

whenever a, b > 1.

3.3.2 Joint distribution of θ̂n and σ̂2 and consequences

In order to study the distribution of θ̂n and σ̂2, we need the following
theorem, which proves that the projections onto orthogonal spaces
of a Gaussian vector with isometric covariance are independent and
Gaussian.

Theorem 3.2 (Cochran theorem) Let Z ∼ Normal(0, In) and let
V1, . . . , Vk be orthogonal linear spaces of Rn. Define the Gaussian
vectors Zj = P j Z := projVj (Z), where P j is the orthonormal
projection matrix onto Vj . Then, we have that Z1, . . . , Zk are inde-
pendent Gaussian vectors, and that

‖Zj‖2 ∼ ChiSq(nj) (3.11)

where nj = dim(Vj) (note that
∑k

j=1 nj ≤ n).



3 Linear regression 36

10: we call also E a confidence ellip-
soid

11: We proved above that the numer-
ator ‖X(θ̂n − θ)‖2/σ2 has ChiSq(d)

distribution while the denominator (n−
d)σ̂2/σ2 has ChiSq(n−d) distribution
and that both are independent, so that
the definition (3.9) of the Fisher distri-
bution entails the result.

The proof of Theorem 3.2 is given in Section 3.6 below. Let us go
back to the Gaussian linear model where y = X θ + ε with ε ∼
Normal(0, σ2 In). We know that θ̂n is a Gaussian vector, as a linear
transformation of the Gaussian vector y, so that

θ̂n ∼ Normal(θ, σ2(X>X)−1)

in view of Equations (3.5) and (3.6). Moreover, we know from (3.7)
that y−X θ̂n = (In−H) ε = projV ⊥(ε) and that X(θ̂n − θ) =

projV (y−X θ) = projV (ε). Since V ⊥ V ⊥, Theorem 3.2 entails
that y−X θ̂n and X(θ̂n − θ) are independent, so that σ̂2 and θ̂n are
also independent. Moreover, since X is full rank, we have dimV = d

and dimV ⊥ = n− d, which entails with Theorem 3.2 that

(n− d)
σ̂2

σ2
= ‖ projV ⊥(ε /σ)‖2 ∼ ChiSq(n− d)

and
‖X(θ̂n − θ)‖2

σ2
= ‖ projV (ε /σ)‖2 ∼ ChiSq(d).

This proves the following theorem.

Theorem 3.3 Assume that X is full rank and that y = X θ+ε with
ε ∼ Normal(0, σ2 In). Put ŷ = X θ̂n where θ̂n = (X>X)−1 X> y

and σ̂2 = ‖y−ŷ‖2/(n− d). Then, we have that θ̂n and σ̂2 are in-
dependent and such that

θ̂n ∼ Normal(θ, σ2(X>X)−1), (n− d)
σ̂2

σ2
∼ ChiSq(n− d)

and ‖X(θ̂n − θ)‖2/σ2 ∼ ChiSq(d).

Theorem 3.3 has many consequences for the inference of θ and σ2 in
the Gaussian linear model. If σ2 is known, the set

E =
{
t ∈ Rd :

1

σ2
‖X(θ̂n − t)‖2 ≤ qChiSq(d)(1− α)

}
where qChiSq(d)(1 − α) is the quantile function of the ChiSq(d) dis-
tribution at 1 − α, is a confidence set10 for θ in the Gaussian linear
model at level 1 − α, since it satisfies by construction the coverage
property Pθ[θ ∈ E ] = 1 − α. If σ2 is unknown (which is always the
case), we use the fact11 that

‖X(θ̂n − θ)‖2

dσ̂2
∼ Fisher(d, n− d)

and consider instead the ellipsoid{
θ ∈ Rd :

1

dσ̂2
‖X(θ̂n − θ)‖2 ≤ qFisher(d,n−d)(1− α)

}
, (3.12)

which is by construction a confidence set at level 1 − α. Note the
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12: Note again the fact that the ra-
tio structure in (3.13) cancels out σ2

and that its exact distribution is known,
thanks to the assumption that the noise
ε is Gaussian.

13: We use the fact that
qStudent(k)(α) = −qStudent(k)(1 − α)

in this construction, since we know
that Student(k) is a symmetrical
distribution in view of (3.8).

cute trick involved in (3.12): the ratio structure allows to cancel out
σ2, leading to a statistic that does not depend on σ2, with a known
distribution.

Confidence intervals. Both previous confidence regions provide cov-
erage for the whole vector θ ∈ Rd. We can also build confidence inter-
vals for each coordinate of θ. Indeed, we have θj = θ>ej where ej is
the canonical basis vector with 1 at coordinate j and 0 elsewhere. More
generally, we can build a confidence interval for a>θ for any vector
a ∈ Rd. We know that a>(θ̂n − θ) ∼ Normal(0, σ2a>(X>X)−1a),
so that

a>(θ̂n − θ)

σ
√
a>(X>X)−1a

∼ Normal(0, 1)

and let us recall that θ̂n and σ̂2 are independent and that (n−d)σ̂2/σ2 ∼
ChiSq(n− d). This entails

a>(θ̂n − θ)√
σ̂2a>(X>X)−1a

∼ Student(n− d) (3.13)

in view of the definition (3.8) of the Student distribution.12 This
proves that the interval

Ia,1−α =
[
a>θ̂n ± qStudent(n−d)(1− α/2)

√
σ̂2a>(X>X)−1a

]
,

where qStudent(n−d) is the quantile function of the Student(n − d)

distribution, is a confidence interval for a>θ at level 1 − α, since it
satisfies Pθ[a>θ ∈ Ia,1−α] = 1 − α by construction.13 In particular,
for a = ej , we obtain that[

(θ̂n)j ± qStudent(n−d)(1− α/2)

√
σ̂2((X>X)−1)j,j

]
(3.14)

is a confidence interval for θj at level 1− α.

This confidence interval allows to build a test for the hypotheses
H0,j : θj = 0 versus H1,j : θj 6= 0, which can help to quantify
the statistical importance of the j-th feature in the considered dataset.
Also, a confidence interval for σ2 can be easily built using the ancillary
statistic (n− d)σ̂2/σ2 ∼ ChiSq(n− d).

Example 3.1 Consider Y1, . . . , Yn iid Normal(µ, σ2). This is a
Gaussian linear model since y = µ1 + ε where ε ∼ Normal(0, σ2 In)

and 1 = [1 · · · 1]> ∈ Rn. We have using (1> 1)−1 1> y = n−1∑n
i=1 Yiµ̂n = Ȳn together with σ̂2 =

1
n−1‖y−Ȳn 1 ‖2 = 1

n−1

∑n
i=1(Yi − Ȳn)2 and we know from The-

orem 3.3 that µ̂n and σ̂2 are independent and such that
√
n(µ̂n −

µ)/σ ∼ Normal(0, 1) and (n − 1)σ̂2/σ2 ∼ ChiSq(n − 1) so that
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14: In the sense that Xnew

does not belong to the dataset
(X1, Y1), . . . , (Xn, Yn) with which θ̂n
is trained

by definition of the Student(n− 1) distribution we have√
n

σ̂2
(µ̂n − µ) ∼ Student(n− 1)

so that we can build, using this ancillary statistic, a confidence
interval and tests for µ when σ2 is unknown.

Example 3.2 Consider the simple Gaussian linear regression model
where Yi = axi + b + εi, with a, b ∈ R, x1, . . . , xn ∈ R and
εi ∼ Normal(0, σ2) iid. This can be written as a linear model with

y = X θ + ε =

1 x1
...

...
1 xn

[a
b

]
+ ε,

where we can compute explicitly θ̂n and σ̂2 and obtain their distribu-
tions using Theorem 3.3.

Prediction intervals. In the previous paragraph, we built confidence
sets and intervals for the parameter θ ∈ Rd. But, let us remind ourselves
that one of the main usages of the linear model is to provide predictions
of the label Y ∈ R associated to a vector of features X ∈ Rd. Once the
least-squares estimator θ̂n is computed, we predict the unknown label
Ynew of a new14 feature vector Xnew ∈ Rd using Ŷnew = X>newθ̂n.
If we are willing to assume that the model is Gaussian, namely ε ∼
Normal(0, σ2 In), and that the unknown label Ynew satisfies the same
Gaussian linear model Ynew = X>newθ + εnew where εnew is indepen-
dent of ε and εnew ∼ Normal(0, σ2), then we know that Ŷnew and
Ynew are independent Gaussian random variables, so that Ŷnew − Ynew

is also Gaussian, and Eθ[Ŷnew − Ynew] = X>newEθ[θ̂n] −X>newθ = 0

and

V[Ŷnew − Ynew] = V[Ŷnew] + V[Ynew]

= σ2(X>new(X>X)−1Xnew + 1),

which means that

Ŷnew − Ynew ∼ Normal
(
0, σ2(1 +X>new(X>X)−1Xnew)

)
and using again the fact that σ̂2 and θ̂n are independent and (n −
d)σ̂2/σ2 ∼ ChiSq(n− d) we obtain

Ŷnew − Ynew√
σ̂2(1 +X>new(X>X)−1Xnew)

∼ Student(n− d)
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15: This is called Bonferroni correction,
although this strategy is due to Olive
Jean Dunn (1915–2008) who worked
on statistical testing for biostatistics.

so that the interval

Inew(Xnew) =
[
Ŷnew±qStudent(n−d)(1− α/2)

×
√
σ̂2(1 +X>new(X>X)−1Xnew)

]
is a prediction interval at level 1− α, since we have by construction
P[Ynew ∈ Inew(Xnew)] = 1− α.

3.3.3 The Fisher test

Using the confidence interval (3.13) we can test H0 = θ1 = θ2 by
using a = [1,−1, 0, . . . , 0]. But, how can we test H0 : θ1 = θ2 = 0 or
more generally a multiple null hypothesis such as

H0 : θ1 = · · · = θk = 0 (3.15)

for k = 2, . . . , d ? If we fix j ∈ {1, . . . , k} and consider the simple null
hypothesis H0,j : θj = 0 versus the alternative H1,j : θj 6= 0, we know
thanks to the confidence interval (3.14) together with Proposition 2.6
that the test with rejection set

Rj,α =
{
|(θ̂n)j | > qStudent(n−d)(1− α/2)

√
σ̂2((X>X)−1)j,j

}
has level α, namely Pθj=0[Rj,α] = α, for any j = 1, . . . , k. So, an
approach to test the multiple hypothesis H0 given by (3.15) would be
to consider a rejection set given by the union of the individual Rj,α,
with a decreased level α/k, since

The notation PH0 means that we com-
pute the probability assuming that H0

holds, namely θ1 = · · · = θk = 0

PH0

[ k⋃
j=1

Rj,α/k

]
≤

k∑
j=1

Pθj=0[Rj,α/k] ≤ k × α/k = α,

so that the test with rejection set ∪kj=1Rj,α/k for the null hypothe-
sis (3.15) has indeed level α. This strategy, which relies on a union
bound for the construction of a multiple test is called the Bonferroni
correction.15 It is the simplest approach for multiple testing, more
about multiple tests will follow later in this book.

This Bonferroni correction requires to replace the individual levels
α of each test by the decreased α/k, where k is the number of null
hypotheses to be tested. If k is large, this is a large decrease, and we
expect a large deterioration of the power of each individual test. In the
Gaussian linear model, we can do much better than this, thanks to the
Fisher test.

Let us continue with the null assumption (3.15) and put Θ0 = {θ ∈
Rd : θ1 = · · · = θk = 0}. Let us that recall that V = span(X) =

{X u : u ∈ Rd} and introduce W = {X u : u ∈ Θ0}. Note that
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Vy•

projV (y)

W

• projW (y)
•

Figure 3.2: Geometric construction of
the Fisher test

16: Theorem 3.2 tells us that under
H0, we have that ‖ projW ′(ε /σ)‖2 ∼
ChiSq(k), that ‖projV⊥(ε /σ)‖2 ∼
ChiSq(n − d) and that both are inde-
pendent.

θ ∈ Θ0 means that A θ = 0 with A = [IkOk,d−k] corresponding
to the horizontal concatenation of the identity matrix on Rk and a
k × (d− k) zero matrix. More generally, we can consider a multiple
testing problem with null hypothesis

H0 : θ ∈ Θ0 with Θ0 = ker(A), (3.16)

where A is a k×dmatrix of rank k. The idea of the Fisher test is to use
the fact that θ ∈ Θ0 means that X θ lives in a linear subset W ⊂ V ,
of dimension d− k < d, and to detect statistically this fact.

The Fisher test uses a geometric solution to this testing problem: we
decompose Rn as the following direct sums

Rn = V ⊥ ⊕ V = V ⊥ ⊕W ⊕W ′,

where we note that dim(V ⊥) = n − d, dim(W ) = d − k and
dim(W ′) = k, where W = {X θ : θ ∈ Θ0} ⊂ V . Consider now the
projections projV (y) and projW (y) of y onto V and its subspace W .
Pythagora’s theorem entails that

‖y−projW (y)‖2 = ‖y−projV (y)‖2 + ‖ projV (y)− projW (y)‖2

since y−projV (y) ⊥ projV (y)− projW (y) ∈ V , so that

‖ projV (y)−projW (y)‖2 = ‖y−projW (y)‖2−‖y−projV (y)‖2.

Recall that projV (y) = X θ̂n where θ̂n is the least squares estima-
tor while projW (y) = X θ̃n where θ̃n is the least squares estimator
computed under H0, namely θ̃n = argminθ∈Θ0

‖y−X θ‖2. This
is where the trick of the test comes into the picture: the quantity
projV (y)− projW (y) behaves very differently whenever H0 holds or
not. Indeed, under H0, namely when X θ ∈W , we have

projV (y)− projW (y) = projW ′(y) = projW ′(X θ) + projW ′(ε)

= projW ′(ε),

since in this case X θ ∈ W ⊥ W ′, while projW ′(X θ) 6= 0 when
θ /∈ Θ0. So, under H0, we have that (projV (y) − projW (y))/σ =

projW ′(ε /σ) while (y−projV (y))/σ = projV ⊥(ε /σ). Therefore,
since V ⊥ ⊥W ′, Theorem 3.2 together with the definition (3.9) of the
Fisher distribution proves that

‖projV (y)− projW (y)‖2/k
‖y−projV (y)‖2/(n− d)

=
‖ projW ′(ε /σ)‖2/k

‖ projV ⊥(ε /σ)‖2/(n− d)

∼ Fisher(k, n− d)

under the H0 hypothesis.16 This can be rewritten, under H0, as
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(
‖y−X θ̃n‖2 − ‖y−X θ̂n‖2

)
/k

‖y−X θ̂n‖2/(n− d)
=
‖X(θ̂n − θ̃n)‖2

kσ̂2

∼ Fisher(k, n− d).

Once again, the ratio structure of the ancillary statistic cancels out the
unknown σ2. We can conclude now that the Fisher test with rejection
region

Rα =

{
‖X(θ̂n − θ̃n)‖2

kσ̂2
≥ qFisher(k,n−d)(1− α)

}
has levelα for the null hypothesis (3.16), namely that supθ∈Θ0

Pθ[Rα] =

α. This test is pretty intuitive and can be understood as follows: if
θ ∈ Θ0 then both estimators θ̂n and θ̃n should be close, and X(θ̂n−θ̃n)

should be, consequently, “small”, the small miracle being that, in the
Gaussian linear model, we can perfectly quantify how small.

Example 3.3 Consider a Gaussian linear model Yi = X>i w+b+εi
where w ∈ Rd−1, where b ∈ R is an intercept In practice, you should always include

an intercept in a linear model, unless
you have a good reason in not doing so.

and the noise εi ∼
Normal(0, σ2) is iid. Using the same notations as before, we can
rewrite this as y = X θ + ε where ε ∼ Normal(0, σ2 In), where
θ = [b, w>]> ∈ Rd and where X = [1X1 · · ·Xd−1] is assumed
to be full-rank. In this model, we wish to test if the features Xi are
useful or if a constant intercept is enough to predict Y . Namely,
we want to test H0 : w = 0 versus H1 : w 6= 0, namely H0 :

θ2 = · · · = θd = 0. This can be done using the Fisher test, putting
W = span(1) so that dim(W ) = 1 = d − k with k = d − 1 and
Θ0 = {θ ∈ Rd : θ2 = · · · = θd = 0}. Since projW (y) = Ȳn 1n,
the least-squares estimator under H0 is θ̃n = Ȳn 1d, so that the
rejection set at level α of the Fisher test writes in this case{

‖X θ̂n − Ȳn 1n ‖2

(d− 1)σ̂2
≥ qFisher(d−1,n−d)(1− α)

}
, (3.17)

with the same notations as before. The p-value of this test can be
therefore used as a quantification of how much the features are
informative globally to predict the label using a linear model, versus
a constant intercept. This test is known as the F -test for linear
regression and the statistic used in (3.17) is known as the F -statistic.

3.3.4 Analysis of variance

Consider independent random variables Xi,j ∼ Normal(mi, σ
2) for

i = 1, . . . , k and j = 1, . . . , ni, namely, we observe k Gaussian iid
samples with respective sizes n1, n2, . . . , nk, denoted

Xi,• = [Xi,1 · · ·Xi,ni ]
> ∈ Rni .



3 Linear regression 42

The parameters m = [m1 · · ·mk]
> ∈ Rk and σ2 > 0 are unknown,

and we want to build a test for the hypotheses

H0 : m1 = m2 = · · · = mk against H1 : ∃i 6= i′ : mi 6= mi′ ,

namely, we want to test if all the samples share the same expectation.
We consider the random vector

X = [X>1,• · · ·X>k,•]> ∈ Rn

where n =
∑k

i=1 ni, which is the vertical concatenation of the random
vectors X1,•, . . . , Xk,•. First, we observe that

µ = E[X] =
[
m1 · · ·m1m2 · · ·m2 · · ·mk · · ·mk

]> ∈ Rn

belongs to a linear space E of dimension k, since µ =
∑k

i=1miei
where e1 ∈ Rn is the vector with n1 first entries equal to 1 and the
others equal to 0, e2 the vector with the first n1 entries equal to 0, the
next n2 entries equal to 1 and all others equal to 0, up to ek with nk
last entries equal to 1 and all others 0, so that E = span(e1, . . . , ek)

where the ei are orthogonal. The orthogonal projection of X onto E is
therefore given by

XE := projE(X) =

k∑
i=1

1

ni
〈X, ei〉ei =

k∑
i=1

X̄i,•ei

where X̄i,• := 1
ni
〈X, ei〉 = 1

ni

∑ni
j=1Xi,j = the average of the i-th

sample. The null hypothesis writes H0 : µ ∈ F , where F = span(1)

is a linear subspace of E with dimension 1. The vector 1 ∈ Rn has all its entries
equal to 1.

The orthogonal projection
of X onto F is given by

XF := projF (X) = X̄ 1

where X̄ = 1
n

∑k
i=1

∑ni
j=1Xi,j is the average over all the samples.

We can use the Fisher test to test for H0. We write X = µ+ ε where
ε ∼ Normal(0, σ2 In) and decompose

Rn = E⊥ ⊕ E = E⊥ ⊕ F ⊕W.

Let us recall that the idea of the Fisher test is to exploit the fact that
XE − XF = XW = projW (µ + ε) = projW (µ) + projW (ε) and
that whenever H0 is true, namely µ ∈ F , we have projW (µ) = 0,
so that 1

σ2 ‖XE −XF ‖2 = ‖ projW (ε /σ)‖2. Moreover, X −XE =

projE⊥(X) = projE⊥(µ+ ε) = projE⊥(ε) since µ ∈ E so 1
σ2 ‖X −

XE‖2 = ‖projE⊥(ε /σ)‖2. Since ε /σ ∼ Normal(0, In) we know
from Theorem 3.2 that

‖ projW (ε /σ)‖2 ∼ χ2(k−1) and ‖projE⊥(ε /σ)‖2 ∼ χ2(n−k)
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17: A class corresponds here to a sam-
ple i

18: weighted by the sample proportions
ni/n for i = 1, . . . , k

19: Using H2 = H and H>H

we get hi,i = (H2)i,i = h2
i,i +∑

i′ 6=i h
2
i,i′ so that hi,i(1− hi,i) ≥ 0.

since dim(E⊥) = n − k and dim(W ) = k − 1 and that these are
independent variables since E⊥ ⊥W . This proves that

T =
‖XE −XF ‖2/(k − 1)

‖X −XE‖2/(n− k)
∼ Fisher(k − 1, n− k),

so we can consider the Fisher test with rejection region

R = {T ≥ qFisher(k−1,n−k)(1− α)}.

We can rewrite the statistic T in a much more interpretable way. First,
we can write

‖X −XE‖2 =
k∑
i=1

ni∑
j=1

(Xi,j − X̄i,•)
2

=
k∑
i=1

ni
1

ni

ni∑
j=1

(Xi,j − X̄i,•)
2 =: nVintra,

where Vintra is the so-called intra-class variance17 which corresponds
to the average of the weighted18 variances 1

ni

∑ni
j=1(Xi,j − X̄i,•)

2 of
each sample i = 1, . . . , k and second, we have

‖XE −XF ‖2 =

k∑
i=1

ni(X̄i,• − X̄)2 =: nVinter,

where Vinter is the inter-class variance which corresponds to the weighted
variance of the averages of each sample. This explains the name
ANOVA (ANalysis Of VAriance), since the Fisher test uses here the
test statistic

T =
Vinter/(k − 1)

Vintra/(n− k)
,

which is the ratio between the inter and intra-class variances Vinter and
Vintra.

3.4 Leverages

Let us go back now to the general linear model. We know that the
residual vector ε̂ = y−ŷ = (I −H)y is such that E[ε̂] = 0 and
V[ε] = σ2(I −H), so that

ε̂i ∼ Normal(0, σ2(1−hi,i)) where hi,i = H i,i = X>i (X>X)−1Xi.

We know that hi,i ∈ [0, 1] since H is an orthonormal projection ma-
trix.19 We call hi,i the leverage score of sample i. We say that i has
small leverage whenever hi,i is close to zero while we say that is as a
large leverage when hi,i is close to 1, since in this case the contribution
of sample i to the linear model is important, since ε̂i ≈ 0. Also, we
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note that

hi,i =
∂Ŷi
∂Yi

since ŷ = H y, namely Ŷi =
∑d

j=1 H i,j Yj . So, the leverage hi,i
can be understood as a quantity that measures the “self-sensitivity”
to its prediction, namely the influence of Yi on the computation of
Ŷi. We will see also in the next Section that the leverage score is a
very important concept as it is deeply connected to the theoretical
performance of the least-squares estimation procedure.

3.5 Least squares are minimax optimal

While the previous contents is quite classical and well-known, the
results provided in this Section are surprisingly recent and coming
from the PhD manuscript of J. Mourtada, see [12, 13] [12]: Mourtada (2019), Contributions to

statistical learning: density estimation,
expert aggregation and random forests
[13]: Mourtada (2020), ‘Exact minimax
risk for linear least squares, and
the lower tail of sample covariance
matrices’

.

Let us come back to the general case where (X1, Y1), . . . , (Xn, Yn)

are iid with same distribution as (X,Y ), with X ∈ Rd and Y ∈ R
such that E‖X‖2 < +∞ and E[Y 2] < +∞. Also, we assume that PX
is non-degenerate, as explained in Theorem 3.1 and we assume that

Σ := E[XX>] � 0,

namely that Σ is invertible. We consider again the linear model (not
Gaussian, the results stated here are much more general than that).
Given σ2 and PX , we consider the following classes of distribution
PX,Y on (X,Y ).

Definition 3.1 We consider the set C(PX , σ2) of joint distributions
PX,Y such that X ∼ PX and

Y = X>θ? + ε

for some θ? ∈ Rd, where ε satisfies E[ε|X] = 0 and E[ε2|X] ≤ σ2

almost surely. We consider also the set G(PX , σ2) ⊂ C(PX , σ2)

where we assume additionally that ε|X ∼ Normal(0, σ2).

The set C(PX , σ2) is a general set of joint distributions on (X,Y ) with
fixed marginal distribution PX and such that Y is a linear function
of X plus a noise ε which is conditionally centered and with finite
variance. The set G(PX , σ2) is the same as C(PX , σ2), but where we
assume that ε is centered Gaussian and independent of X .

We consider the quadratic risk

R(θ) := E[(Y −X>θ)2] =

∫
(y − x>θ)2PX,Y (dx, dy).
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20: Namely, a measurable function of
(X1, Y1), . . . , (Xn, Yn).

It is easy to see that

θ? = argmin
θ∈Rd

R(θ) = Σ−1 E[Y X].

Our aim here is to find an estimator20 θ̂ of θ such that the excess risk

E(θ̂) := R(θ̂)−R(θ?)

is minimal. Note that if (X,Y ) ∼ P with P ∈ C(PX , σ2), then

E(θ) = E[(Y −X>θ)2 − (Y −X>θ?)2]

= E[(θ? − θ)>X(2Y −X>(θ + θ?))]

= E[(θ? − θ)>X(X>(θ? − θ) + 2ε)]

= E[(θ? − θ)>XX>(θ? − θ)]
= ‖θ? − θ‖2Σ,

We use here the fact that Y =

X>θ?+ ε and that E[ε|X] = 0 almost
surely.

where we introduced ‖x‖2Σ = x>Σx, which is a norm since we
assumed Σ � 0. Whenever (X,Y ) ∼ P with P ∈ C(PX , σ2) we will
therefore write

E(θ) = R(θ)−R(θ?) = ‖θ − θ?‖2Σ

and whenever θ̂ depends on the data (X1, Y1), . . . , (Xn, Yn), we can
consider, since (X,Y ) is an independent copy with the same distribu-
tion,

E[E(θ̂)]

where this expectation is with respect to P⊗n, for the randomness
coming from the data. We can consider now the minimax risk for a set
P of distributions:

inf
θ̂

sup
P∈P

E[E(θ̂)].

The infimum is taken over any possible estimator, namely any statistic
of the data, while the sup is over all distributions in P . Hence the
name minimax, since we look at the worst-case excess risk over the
considered set P , but we consider the best possible estimator (with the
inf). Since G(PX , σ2) ⊂ C(PX , σ2), the minimax risk of the former is
smaller than the one of the latter.

Some remarks and extra notations are required before we can state the
main result of the section.

I The linear model is well-specified here, since we assume that
Y = X>θ? + ε almost surely with E[ε|X] = 0, so that there is
no approximation term of E[Y |X] by X>θ?.

I For the class P = C(PX , σ2), we expect a minimax estimator
A minimax estimator is an estimator
achieving the minimax risk.θ̂ to depend both on PX and σ2. Quite surprisingly, we will see

that it is not the case.
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Let us introduce

Σ̂ =
1

n

n∑
i=1

XiX
>
i =

1

n
X>X

and let us introduce also the “whitened” random vectors X̃i = Σ−1/2Xi

(so that E[X̃i(X̃i)
>] = Id) and define

Σ̃ =
1

n

n∑
i=1

X̃iX̃
>
i = Σ−1/2 Σ̂ Σ−1/2 .

The following theorem holds.

Theorem 3.4 Assume that PX is non-degenerate, that n ≥ d and
that σ2 > 0. Then

inf
θ̂

sup
P∈C(PX ,σ2)

E[E(θ̂)] = inf
θ̂

sup
P∈G(PX ,σ2)

E[E(θ̂)]

=
σ2

n
E[tr(Σ̃

−1
)].

(3.18)

Furthermore, the infimum in the minimax risk is achieved by the
ordinary least squares estimator (3.1).

The proof of Theorem 3.4 is done in two steps. The first step, which
proves that the ordinary least squares estimator satisfies the upper
bound in (3.18), is given in Section 3.6 below. Since the proof of the
lower bound requires extra tools from Bayesian statistics, it will be
provided in Section 4.6 of Chapter 4.

This theorem deserves several remarks.

I The theorem proves that the least-squares estimator is, in a
fairly general setting, minimax optimal: it cannot be improved
by another estimator, uniformly over the set of distributions
C(PX , σ2).

I The Gaussian noise, namely the class G(PX , σ2) “saturates” the
minimax risk, and corresponds to the least favorable distribution
in the minimax sense.

I The minimax risk is invariant by a linear transformation of
the features vectors: it is unchanged if one replaces Xi by
X ′i = AXi for some deterministic invertible matrix A. In-
deed we have in this case Σ̂

′
= 1

n

∑n
i=1X

′
iX
′>
i = A Σ̂A>

so that (Σ̂
′
)−1 Σ′ = (A>)−1(Σ̂)−1 ΣA> which proves that

(Σ̂
′
)−1 Σ′ and (Σ̂)−1 Σ are congruent matrices, so that they

share the same trace, namely tr((Σ̂
′
)−1 Σ′) = tr((Σ̂)−1 Σ),

and the minimax risk is indeed invariant when replacing Xi by
AXi. This is of course expected, since the supremum is over
linear functions.
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A lower bound for σ2E[tr(Σ̃
−1

)]/n can be easily obtained thanks to
the following proposition.

Proposition 3.5 The function A 7→ tr(A−1) is convex on the cone
of positive definite matrices.

The proof of Proposition 3.5 is given in Section 3.6 below. By combin-
ing Proposition 3.5 and Jensen’s inequality, we obtain

E[tr(Σ̃
−1

)] ≥ tr(E[Σ̃]−1),

but E[Σ̃] = Σ−1/2 E[Σ̂] Σ−1/2 = Id, so the lower bound

E[tr(Σ̃
−1

)] ≥ d

holds, and consequently the minimax risk satisfies

inf
θ̂

sup
P∈C(PX ,σ2)

E[E(θ̂)] =
σ2

n
E[tr(Σ̃

−1
)] ≥ σ2 d

n
. (3.19)

We can also provide another expression for E[tr(Σ̃
−1

)] using the lever-
age scores we discussed in Section 3.4. Let us recall at this point that
since PX is non-degenerate, and if X1, . . . Xn+1 are iid and distributed
as PX , we have

∑n+1
i=1 XiX

>
i � 0.

Theorem 3.6 Under the same assumptions as that of Theorem 3.4,
the minimax risk can be written as

1

n
E[tr(Σ̃

−1
)] = E

[ ̂̀
n+1

1− ̂̀n+1

]
where ̂̀n+1 is the leverage of one data point among n+ 1 given by

̂̀
n+1 = X>n+1

( n+1∑
i=1

XiX
>
i

)−1
Xn+1,

where X1, . . . , Xn, Xn+1 are iid with distribution PX .

The proof of Theorem 3.6 is given in Section 3.6 below. Let us recall
that ̂̀n+1 = ∂Ŷn+1/∂Yn+1 where Ŷn+1 = X>n+1θ̂n+1 where θ̂n+1 is
the ordinary least squares estimator computed on the n + 1 samples
(X1, Y1), . . . , (Xn+1, Yn+1). This theorem entails that the minimax
risk, which measures the complexity of the estimation problem, is
completely determined by the leverage score. Even more than that, it is
the expected value of a convex function of ̂̀n+1, so that the minimax
risk is small when ̂̀n+1 is small, and gets larger with a large ̂̀n+1,
which is natural since in such a case, the regression problem is more
difficult.
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21: We won’t pursue further about
Wishart distributions.

22: Finding the most favorable distribu-
tion is, up to our knowledge, an open
problem. We conjecture that it is given
by the uniform distribution on the unit
sphere of Rd.

23: Indeed, we have X>θ = X̃j for
the choice θ = Σ−1/2 ej , so that
E[X̃4

j ] ≤ E[X̃2
j ]2 = κ, where we

used E[X̃X̃>] = Id. This entails that
E‖X̃‖4 =

∑
1≤j,k≤d E[X̃2

j X̃
2
k ] ≤∑

j,k

√
E[X̃4

j ]E[X̃4
k ] ≤ κd2.

A corollary of Theorem 3.6 is an improved lower bound compared to
the previous σ2d/n.

Corollary 3.7 Under the same assumptions as that of Theorem 3.4,
we have that the minimax risk satisfies

1

n
E[tr(Σ̃

−1
)] = E

[ ̂̀
n+1

1− ̂̀n+1

]
≥ σ2 d

n− d+ 1
.

The proof can be found in Section 3.6. The lower bound σ2d/(n−d+1)

is very sharp since it can be seen that

E[E(θ̂n)] = σ2 d

n− d− 1

whenever PX = Normal(0,Σ), if θ̂n is the ordinary least squares
estimator. This comes from the study of the Wishart distribution, which
is the distribution of X>X when X ∼ Normal(0,Σ).21 This result
means that the Gaussian design Normal(0,Σ) is, almost, the most
favorable design for linear regression, since for this distribution, the
minimax risk is almost minimal (compare the denominators n− d− 1

and n− d+ 1).22

We were able to provide a lower bound for E[tr(Σ̃
−1

)] that is explicit
with respect to d, n and σ2. Now, it remains to provide a similarly
explicit upper bound for this quantity. This requires extra assumptions
on PX .

The first assumption is a “quantified” version of the non-degenerate
assumption about PX , see Theorem 3.1. Indeed, we assume that there
is α ∈ (0, 1] and C ≥ 1 such that

P[|X>θ| ≤ t‖θ‖Σ] ≤ (Ct)α (3.20)

for any t > 0 and any non-zero vector θ ∈ Rd. This is equivalent to the
assumption that P[|X̃>θ| ≤ t] ≤ (Ct)α for any θ ∈ Sd−1 where we
recall that X̃ = Σ−1/2X . This assumption “quantifies” the assumption
P[X>θ = 0] = 0. The second assumption about PX requires that

E[‖Σ−1/2X‖4] ≤ κd2. (3.21)

This is entailed23 by the condition E[(X>θ)4]1/4 ≤ κE[(X>θ)2]1/2

for any θ ∈ Rd.

Theorem 3.8 Assume that X satisfies (3.20) and (3.21) and put
C ′ = 3C4e1+9/α. Then, if n ≥ max(6d/α, 12 log(12/α)/α), we
have

1

n
E tr[(Σ̃)−1] ≤ d

n
+ 8C ′κ

(d
n

)2
.

This entails, together with Theorem 3.4 and the lower bound (3.19),
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24: Indeed, ker(X>X) = ker(X)

so that X>X u = 0 ⇔ X u = 0 ⇔
X>i θ = 0 for all i = 1, . . . , n.

25: as a linear transformation of a Gaus-
sian vector

that

σ2 d

n
≤ inf

θ̂
sup

P∈C(PX ,σ2)

E[E(θ̂)] ≤ σ2 d

n

(
1 + 8C ′κ

(d
n

))
.

The proof of such an explicit upper bound is quite technical and some-
what beyond the scope of this book. It can be found in [13] [13]: Mourtada (2020), ‘Exact minimax

risk for linear least squares, and
the lower tail of sample covariance
matrices’

.

Let us wrap up some of the nice things that we learned in this Section.

I Ordinary least-squares are minimax optimal for the well-specified
linear regression model. This means that no other statistical pro-
cedure can perform (uniformly) better than this simple proce-
dure.

I The Gaussian design is almost the most favorable one in the
minimax sense.

I The minimax rate is exactly of order σ2d/n under mild assump-
tions on PX .

I The statistical complexity of the linear regression problem is,
when measured by the minimax risk, fully explained by the
distribution a leverage scores of one sample among n+ 1.

3.6 Proofs

3.6.1 Proof of Theorem 3.1

Point (2)⇔ Point (3) is obvious since X>X � 0 entails that X>X
is invertible. Point (2)⇒ Point (1) comes from a proof by contradiction.
If 0 < p = P[X>u = 0] then X>i u = 0 for all i = 1, . . . , n with
a probability pn > 0 since X1, . . . , Xn are iid, so that X>X θ =∑n

i=1(X>i θ)
2Xi = 0 and X>X cannot be invertible almost surely.

The proof of Point (1) ⇒ Point (2) can be done by recurrence. We
first remark that X>X is invertible if and only if span(X1, . . . Xn) =

Rd.24 We will show that span(X1, . . . , Xd) = Rd almost surely by
recurrence. We put Vk = span(X1, . . . , Xk) so that dim(Vk) ≤ k ≤ d.
For k = 1 we do have dimV1 = 1 so it is OK. Now, assume that
dim(Vk−1) = k − 1. We have that Xk is independent from Vk−1 =

span(X1, . . . , Xk−1) and dim(Vk−1) = k − 1 < d so that Vk−1 ⊂ H
where H ⊂ Rd is an hyperplane. So, we have again by independence
that P[Xk ∈ Vk−1] = P[Xk ∈ Vk−1|X1, . . . , Xk−1] ≤ P[Xk ∈ H] =

0 using Point (1). So, Xk /∈ Vk−1 almost surely, and dim(Vk) = k

almost surely. �

3.6.2 Proof of Theorem 3.2

We have V[Zj ] = P j P
>
j = P j since P j is an orthogonal projection

matrix andZj = P j Z, which entails thatZj is a Gaussian vector25 and
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that Zj ∼ Normal(0,P j). Note that Zj has no density with respect to
the Lebesgue measure, it is a random vector on Rn which belongs to
linear subspace of dimension nj < n. Now, we have

cov[Zj , Zj′ ] = cov[P j Z,P j′ Z] = P j P
>
j′ = O The matrix O stands for the matrix with

all entries equal to 0.

since Vj ⊥ Vj′ , so that Zj and Zj′ are independent random vectors, be-
cause [Z>j Z

>
j′ ]
> is a Gaussian vector with a block diagonal covariance

matrix. This proves that the Z1, . . . , Zk are independent random vec-
tors. Finally, since P j is an orthogonal projection matrix onto a space of
dimension nj , we can decompose it as P j = QDnj Q

> where Dnj =

diag[1, . . . , 1, 0, . . . , 0] is the diagonal matrix with first nj diagonal
elements equal to 1 and all others equal to 0 and where Q is an orthonor-
mal matrix. We know that Z ′ := Q> Z ∼ Normal(0, In), so P j Z =

Q[Z ′1 · · ·Z ′nj ]
> =: QZ ′− and ‖P j Z‖2 = ‖QZ ′′−‖2 = ‖Z ′′−‖2 (since

Q>Q = In), so that finally, we have ‖P j Z‖2 =
∑nj

j=1(Z ′j)
2. This

proves that ‖P j Z‖2 ∼ ChiSq(nj) since Z ′ ∼ Normal(0, In). �

3.6.3 Proof of Proposition 3.5

Put f(A) = tr(A−1) for A � 0 and consider A,B � 0 and α ∈
[0, 1]. We write

f(αA+(1− α)B) = f(A+(1− α)D) = g(1− α),

where we defined gA,D(u) = f(A+uD) for u ∈ [0, 1] and D =

B−A. First, let us prove that g′′A,D(0) ≥ 0 for any A < 0 and
symmetric D. Indeed, we have using a Taylor expansion that

(A+εD)−1 = (A(I +εA−1 D))−1

= A−1−εA−1 DA−1 +ε2(A−1 D)2 A−1 + · · ·

where ε > 0 is small enough and · · · contains terms of order O(ε3).
So, we have that

g′′A,D(0) = 2 tr((A−1 D)2 A−1) = 2 tr(CA−1 C>)

where C = A−1 D. But A−1 < 0 so CA−1 C> < 0 and g′′A,D(0) ≥
0. But

g′′A,D(u) =
∂2

∂ε2
gA,D(u+ ε) =

∂2

∂ε2
f(A+(u+ ε)D)

= g′′A+uD,D(0) ≥ 0
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since A+uD = (1 − u)A+uB < 0. This proves that gA,D :

[0, 1]→ R+ is convex, which allows to conclude since

f(αA+(1− α)B) = g(1− α) = g(α · 0 + (1− α) · 1)

≤ αg(0) + (1− α)g(1)

= αf(A) + (1− α)f(B).

3.6.4 Proof of Theorem 3.4: the upper bound

This is actually mainly a computation with no particular tricks. Re-
call that (X,Y ) is such that Y = X>θ? + ε with E[ε|X] = 0 and
E[ε2|X] ≤ σ2. Thanks to Theorem 3.1, we know that the ordinary
least squares estimator θ̂ satisfies

θ̂ = (X>X)−1 X> y = (X>X)−1 X>(X θ? + ε)

= θ? + Σ̂
−1 1

n

n∑
i=1

εiXi

so that recalling 〈u, v〉Σ = u>Σ v and ‖u‖2Σ = 〈u, u〉Σ we have

E[E(θ̂)] = E
∥∥∥Σ̂−1 1

n

n∑
i=1

εiXi

∥∥∥2

Σ
=

1

n2

∑
1≤i,i′≤n

E〈Σ̂
−1
εiXi, Σ̂

−1
εi′Xi′〉

=
1

n2

∑
1≤i,i′≤n

E
[
E[εiεi′ |X1, . . . , Xn]〈Σ̂

−1
Xi, Σ̂

−1
Xi′〉

]
.

But we have E[εiεi′ |X1, . . . , Xn] = 0 whenever i 6= i′ and E[εiεi′ |X1, . . . , Xn] ≤
σ2 whenever i = i′. So, we obtain

E[E(θ̂)] ≤ σ2

n2

n∑
i=1

E‖Σ̂
−1
Xi‖2Σ =

σ2

n2

n∑
i=1

E
[
(Σ̂
−1
Xi)
>Σ Σ̂

−1
Xi

]
=
σ2

n2

n∑
i=1

E
[

tr(X>i Σ̂
−1

Σ Σ̂
−1
Xi)
]

since tr(x) = x for x ∈ R, so that finally, using the cyclic invariance
of the trace and linearity, we obtain

E[E(θ̂)] ≤ σ2

n2

n∑
i=1

E
[

tr(Σ̂
−1

Σ Σ̂
−1
XiX

>
i )
]

=
σ2

n
E
[

tr(Σ̂
−1

Σ Σ̂
−1

Σ̂)
]

=
σ2

n
E
[

tr(Σ̂
−1

Σ)
]

=
σ2

n
E
[

tr((Σ−1/2 Σ̂ Σ−1/2)−1)
]

=
σ2

n
E[tr(Σ̃

−1
)]

which proves the upper bound. �
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3.6.5 Proof of Theorem 3.6

Let Xn+1 ∼ PX be independent of X1, . . . , Xn and write

1

n
E tr(Σ̃

−1
) =

1

n
E tr((Σ̂)−1 Σ) = E tr((nΣ̂)−1Xn+1X

>
n+1)

= E〈(nΣ̂)−1Xn+1, Xn+1〉.

The proof uses the following cute trick based on the Sherman-Morrison
lemma.

Lemma 3.9 (Sherman-Morrison) Let A be a d × d invertible real
matrix and u, v ∈ Rd. Then the following formula holds

(A+uv>)−1 = A−1−A−1 uv>A−1

1 + v>A−1 u
.

This classical lemma allows to inverse the rank-one perturbation of a
matrix as a function of its inverse.

Proof. The proof follows from a straightforward computation. Put
q = v>A−1 u and write

(A+uv>)
(
A−1 − A−1 uv>A−1

1 + v>A−1 u

)
= (A+uv>)

A−1 +qA−1−A−1 uv>A−1

1 + q

=
I +q I

1 + q
= I We omit obvious computations here,

just develop and cancel the terms...

A similar computation shows that

(
A−1−A−1 uv>A−1

1 + v>A−1 u

)
(A+uv>) = I,

which proves the claim.

Lemma 3.10 For any S � 0 and any v ∈ Rd we have

〈S−1 v, v〉 =
〈(S +vv>)−1v, v〉

1− 〈(S +vv>)−1v, v〉
.

This lemma gives a nice formula that allows to express a quadratic
form as a function of its rank-1 perturbation.

Proof. We have S +vv> < S � 0 so that S +vv> is invertible and
using Lemma 3.9 gives

(S +vv>)−1 = S−1−S−1 vv> S−1

1 + v> S−1 v
,
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26: By “exchangeability” we mean
that this expectation is unchanged
when applying any permutation of
X1, . . . , Xn+1, since these are iid.

so that

〈(S +vv>)−1v, v〉 = v> S−1 v − v> S−1 vv> S−1 v

1 + v> S−1 v

= 〈S−1 v, v〉 − 〈S−1 v, v〉2

1 + 〈S−1 v, v〉
=

〈S−1 v, v〉
1 + 〈S−1 v, v〉

which concludes the proof.

This proves in particular that ̂̀n+1 ∈ [0, 1) a.s. since Σ̂ � 0 a.s. Now,
using Lemma 3.10, we obtain

1

n
E[tr(Σ̃

−1
)] = E

[
〈(nΣ̂)−1Xn+1, Xn+1〉

]
= E

[ 〈(nΣ̂ +Xn+1X
>
n+1)−1Xn+1, Xn+1〉

1− 〈(nΣ̂ +Xn+1X>n+1)−1Xn+1, Xn+1〉

]

= E
[ ̂̀

n+1

1− ̂̀n+1

]
which concludes the proof of Theorem 3.6. �

3.6.6 Proof of Corollary 3.7

Theorem 3.6 and Jensen’s inequality applied with the convex function
x 7→ x/(1− x) on [0, 1) gives

E
[ ̂̀

n+1

1− ̂̀n+1

]
≥ E[̂̀n+1]

1− E[̂̀n+1]
.

Now, an exchangeability26 argument gives

E[̂̀n+1] = E
[〈( n+1∑

i′=1

Xi′X
>
i′

)−1
Xn+1, Xn+1

〉]

= E
[〈( n+1∑

i′=1

Xi′X
>
i′

)−1
Xi, Xi

〉]

for any i = 1, . . . , n+ 1, so that

E[̂̀n+1] =
1

n+ 1

n+1∑
i=1

E
[〈( n+1∑

i′=1

Xi′X
>
i′

)−1
Xi, Xi

〉]

=
1

n+ 1
E
[

tr

(( n+1∑
i=1

XiX
>
i

)−1
n+1∑
i=1

XiX
>
i

)]
=

d

n+ 1
,

so that

E
[ ̂̀

n+1

1− ̂̀n+1

]
≥ d

n− d+ 1
,
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which proves the Corollary �
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Let us go back to the problems of statistical inference that we con-
sidered in Chapter 2. We have data X valued on a measurable space
(E, E) and a model {Pθ : θ ∈ Θ} for its distribution, see Definition 1.1
from Chapter 1. For the problems of estimation and testing, we can
define a set A of decisions: for scalar estimation, it is A = Θ ⊂ R,
while for testing, we have binary decisions, so that A = {0, 1}.

4.1 Elements of decision theory

Given a (measurable) statistical procedure δ : E → A, we decide
δ(X) ∈ A. In order to assess a decision, we use a loss function ` :

A×Θ→ R. This means that if the true parameter is θ ∈ Θ and if we
decide a ∈ A, we incur a loss `(a, θ) ∈ R.

Definition 4.1 Consider a statistical experiment with data X ∈ E
and a set of parameters Θ, a set A of decisions and a loss function
` : A × Θ → R. The risk of a statistical procedure δ : E → A is
given by

R(δ, θ) = Eθ[`(δ(X), θ)]

for any θ ∈ Θ.

For the problem of estimation of a scalar parameter, we have Θ = R =

A and `(θ′, θ) = (θ′− θ)2, so that the risk is, in this case, the quadratic
risk introduced in Definition 2.1 from Chapter 2. Note that we could
consider other losses, such as `(θ′, θ) = |θ′ − θ|p for some p ≥ 1.

Consider now statistical testing with hypotheses H0 : θ ∈ Θ0 and
H1 : θ ∈ Θ1 where {Θ0,Θ1} is a partition of Θ. Introduce the loss
given by

`(i, θ) = 0 if θ ∈ Θi and `(i, θ) = ci if θ ∈ Θ1−i (4.1)

for i ∈ {0, 1} and constants c0, c1 > 0. The risk writes in this case

R(δ, θ) = ciPθ[δ(X) = i] when θ ∈ Θ1−i

for i ∈ {0, 1}. The constants c0, c1 > 0 allow to tune the importance
given to the Type I and Type II errors: the approach described here leads
to an approach of statistical testing different from the one described in
Section 2.3.
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1: A longer story hides beneath this
simple example: the Stein effect and
the Stein estimator, which provably im-
proves the sample average estimator us-
ing thresholding, see [14, 15] for more
details on this.

2: We will do it in Section 4.4, such an
estimator is called a Bayesian estimator.

4.2 Bayesian risk

Let us go back to the coin flip problem considered in Chapter 2. We
observe X1, . . . , Xn iid distributed as Bernoulli(θ) for θ ∈ (0, 1). The
estimator we introduced back then was the empirical mean θ̂n = X̄n =

n−1
∑n

i=1Xi, and we know from (2.3) that the quadratic risk is given
by R(θ̂n, θ) = θ(1 − θ)/n for any θ ∈ (0, 1). But what about the
estimator θ̃n = 0 ? It is a rather stupid estimator, but if θ is close
to 0, it turns out to be a good estimator, and actually, it is easy to see
that R(θ̃n, θ) < R(θ̂n, θ) whenever θ < 1/(n + 1). This proves that
θ̃n = 0 is better than θ̂n, when assessed by the quadratic risk, for θ
small enough.1 This very simple example illustrates the fact that it is
not possible to find an estimator with an optimal risk for all θ ∈ Θ.

As illustrated above, given two statistical procedures δ, δ′ for the
same problem of statistical inference, we do not have in general that
R(δ, θ) < R(δ′, θ) uniformly for θ ∈ Θ. What we can do instead is to
consider an averaged risk: choose a distribution µ on Θ and use it to in-
tegrate the risk over Θ. This distribution is called the prior distribution
or simply the prior.

Definition 4.2 (Bayesian risk) The Bayesian risk of a procedure δ
associated to the prior µ is given by

RB(δ, µ) =

∫
Θ
R(δ, θ)µ(dθ) =

∫
Θ
µ(dθ)

∫
E
`(δ(x), θ)Pθ(dx).

Note that RB(δ, µ) ≤ supθ∈ΘR(δ, θ) which means that the Bayes
risk is always smaller than the worst-case risk over Θ. We understand
this risk as an average of the risk over Θ “weighted” by the prior
distribution µ. Given a prior µ, the Bayesian risk is a scalar value: we
can compare procedures using it and even try to find a procedure that
minimizes it.2

Example 4.1 For statistical testing with the loss given by (4.1), the
Bayesian risk associated to a prior µ writes

RB(δ, µ) =
∑

i∈{0,1}

ci

∫
Θ1−i

Pθ[δ(X) = i]µ(dθ),

which is a weighted combination of the Type I and Type II errors
averaged by the prior µ.

Another interpretation of the Bayesian risk is of utmost importance in
Bayesian statistics. Indeed, we could say that the parameter θ is itself a
random variable distributed as µ, that we denote T instead of θ, and
that Pθ is actually the distribution of X “conditionally” on T = θ.3

3: Of course the event T = θ has zero
probability if T is continuous with re-
spect to the Lebesgue measure. We will
explain clearly what such a conditional
density is in Section 4.3 below.



4 Bayesian statistics 57

Assuming that the joint distribution PT,X of (T,X) is given by

PT,X [B × C] = P[T ∈ B,X ∈ C] =

∫
B
µ(dθ)

∫
C
Pθ(dx),

we could write the Bayesian risk as an expectation with respect to
PT,X , since

RB(µ, δ) =

∫
Θ
µ(dθ)

∫
E
`(δ(x), θ)Pθ(dx) = E[`(δ(X), T )].

What we need to do now, in order to formalize this, is to explain what
a conditional density is, and to explain some useful formulas, such as
the Bayes formula for conditional densities.

4.3 Conditional densities and the Bayes formula

Let X and Y be random variables on the same probability space and
valued in measurable sets X and Y . Let φ be a measurable function
such that φ(X) is integrable. Let us recall that we can define the
conditional expectation E[φ(X)|Y ] as the random variable r(Y ) (for
some measurable function r, almost surely unique) such that We assume here that the reader is famil-

iar with the definition of the conditional
expectation.E[φ(X)ϕ(Y )] = E[r(Y )ϕ(Y )] (4.2)

for any measurable and bounded function ϕ. The particular value r(y)

for some y ∈ Y is denoted E[φ(X)|Y = y]. We know that

E[φ(X)h(Y )|Y ] = h(Y )E[φ(X)|Y ]

almost surely, for any measurable function h such that h(Y ) and
φ(X)h(Y ) are integrable, and we have also

E[E[φ(X)|Y ]] = E[φ(X)]. (4.3)

Finally, we have E[φ(X)|Y ] = E[φ(X)] whenever X and Y are inde-
pendent. Let us suppose now that the joint distribution PX,Y of (X,Y )

has a density p(x, y) with respect to a product of dominating measures
νX ⊗ νY on X ×Y . We can define the marginal densities of X and Y
as

pX(x) =

∫
Y
p(x, y)νY (dy) and pY (y) =

∫
X
p(x, y)νX(dx),

(4.4)
so that we have

E[φ(X)] =

∫
X
φ(x)PX(dx) =

∫
X
φ(x)pX(x)νX(dx)

E[ϕ(Y )] =

∫
Y
ϕ(y)PY (dy) =

∫
Y
ϕ(y)pY (x)νY (dy)



4 Bayesian statistics 58

for any φ and ϕ such that φ(X) and ϕ(Y ) are integrable. Let us intro-
duce

Y0 =
{
y ∈ Y : pY (y) = 0

}
and remark that

PX,Y [X ×Y0] =

∫
X ×Y0

p(x, y)νX(dx)νY (dy)

=

∫
Y0

νY (dy)

∫
X
p(x, y)νX(dx)

=

∫
Y0

pY (y)νY (dy) = 0. Using (4.4)

Given any probability density q on X with respect to νX , we can define

pX|Y (x|y) :=
p(x, y)

pY (y)
1Y{

0
(y) + q(x)1Y0(y), (4.5)

so that all the versions of pX|Y associated to the choice of q are
equal PX,Y -almost surely. Moreover, we can check immediately that∫
X pX|Y (x|y)νX(dx) = 1, so that it is a probability density with re-

spect to νX on X . Now, if we define

r′(y) =

∫
X
φ(x)pX|Y (x|y)νX(dx),

we can write, for any measurable and bounded ϕ, that

E[r′(Y )ϕ(Y )]

=

∫
Y
r′(y)ϕ(y)pY (y)νY (dy)

Using the definition of r′, Fubini
and (4.5)

=

∫
Y{

0

ϕ(y)pY (y)νY (dy)

∫
X
φ(x)

p(x, y)

pY (y)
νX(dx)

Using the fact that PX,Y [X ×Y0] = 0=

∫
X ×Y

φ(x)ϕ(y)p(x, y)νX(dx)νY (dy)

= E[φ(X)ϕ(Y )].

This corresponds to the definition of the conditional expectation, which
is almost surely unique, so that we proved that r = r′ almost surely.
Now, we know that we can compute a conditional expectation using
the formula

E[φ(X)|Y = y] = r(y) =

∫
X
φ(x)pX|Y (x|y)νX(dx).

The density pX|Y is called the conditional density of X knowing Y .

We can define in the exact same way pY |X , the conditional density of
Y knowing X , and by construction of pX|Y and pY |X , we have that
the following equalities

p(x, y) = pX| Y (x| y)pY (y) = pY |X(y|x)pX(x) (4.6)
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hold PX,Y -almost surely. From these equalities we can deduce that

pX|Y (x|y) =
p(x, y)

pY (y)
=

pY |X(y|x)pX(x)∫
X p(x

′, y)νX(dx′)
recalling that PX,Y [X ×Y0] = 0

holds PX,Y -almost surely, which leads, using again (4.6), to the Bayes
formula

pX|Y (x|y) =
pY |X(y|x)pX(x)∫

X pY |X(y|x′)pX(x′)νX(dx′)
, (4.7)

that holds, once again, PX,Y -almost surely. This is a remarkable for-
mula, since it allows to reverse the conditioning: we can write the
conditional density of X knowing Y as a function of the conditional
density of Y knowing X . This formula is at the core of Bayesian
statistics, as explained in the next Section.

4.4 Posterior distribution and Bayes estimator

Let us go back to the setting introduced in Section 4.2. We have data X
and a statistical model {Pθ : θ ∈ Θ}. We consider a prior distribution
µ on Θ. We assume that µ has a density p(·) with respect to a measure
λ on Θ, namely µ(dθ) = p(θ)λ(dθ) and that Pθ has a density that we
will denote as p(·|θ) with respect to a measure ν on E.

Using the same letter for both the den-
sity of µ (namely θ 7→ p(θ)) and the
density of Pθ (namely x 7→ p(x |θ))
might look like a bad idea, but it will
lead to very nice notations in what fol-
lows, and it won’t lead to any ambiguity.

We want to
apply Bayesian reasoning: the density p(·|θ) of the data is understood
as a conditional density of X “knowing the parameter θ”.

The posterior distribution. In order to formalize this, we introduce
a random variable T distributed as µ, and we apply (4.6) in order to ex-
press the joint density of (X,T ) through the product of the conditional
density of X|T and the density of T :

Which holds PX,T -almost surely.pX,T (x, θ) = pX|T (x|θ)pT (θ) = p(x|θ)p(θ). (4.8)

We can only proceed like this to express pX,T , since what we are given
is the prior density p(·) and the model, namely the density p(·|θ). We
know that the marginal density of X can be computed as

pX(x) =

∫
Θ
pX,T (x, θ)λ(dθ) =

∫
Θ
p(x|θ)p(θ)λ(dθ).

Now, using the Bayes formula (4.7), we can reverse the conditioning,
and define what we call the posterior density

p(θ|x) := pT |X(θ|x) =
pX,T (x, θ)

pX(x)
=

p(x|θ)p(θ)∫
Θ p(x|θ′)p(θ′)λ(dθ′)

.

This formula expresses the conditional density of the parameter θ know-
ing the data x (more formally the conditional density of T knowing X)
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4: or approximate it using numerical
methods, whenever the posterior distri-
bution cannot be computed explicitly

5: This is the main criticism with
Bayesian methods: beyond simple mod-
els and conjugate distributions (more
on this later), the computation of the
posterior is not explicit and requires ap-
proximation algorithms that can be nu-
merically expensive, or can depart sig-
nificantly from the original model, see
for instance Chapters 9 and 10 in [16].

through the model (the conditional density of X knowing T ) and the
prior (the density of T ) that are both known and chosen beforehand.
Let us wrap-up what we constructed in the following definition.

Definition 4.3 Consider a prior µ(dθ) = p(θ)λ(dθ) and a model
Pθ(dx) = p(x|θ)ν(dx) for θ ∈ Θ, and the corresponding joint
distribution P (dx, dθ) = p(x|θ)p(θ)ν(dx)λ(dθ). The posterior dis-
tribution is the distribution with density

p(θ|x) =
p(x|θ)p(θ)∫

Θ p(x|θ′)p(θ′)λ(dθ′)

with respect to λ. It is well-defined and unique for P–almost all
(x, θ).

The Bayesian reasoning is therefore as follows: choose a prior density
p(θ) and a model p(x|θ) for the data x knowing the parameter θ. Then,
compute4 the posterior distribution p(θ|x) of θ knowing the data x. A
nice aspect of this approach is that we can quantify uncertainty right
out of the box, since instead of an estimator θ̂n (which is, given data, a
single value), we obtain a full posterior distribution p(θ|x), which takes
into account the data x that we observed. However, such a reasoning
is of course only possible when we know how to choose a prior, and
when we are able to compute exactly or to approximate efficiently the
posterior. 5

The Bayes estimator. Let us consider the estimation problem where
A = Θ ⊂ R and use the Bayes risk to assess the error of an estimator
δ : E → Θ. Arguably, an optimal Bayesian estimator should minimize
the Bayes risk, and a beautiful aspect of the Bayesian approach is that
such a minimizer can be defined precisely. Indeed, we can rewrite the
Bayes risk as follows:

using (4.8)RB(δ, µ) =

∫
Θ

∫
E
`(δ(x), θ)p(x|θ)p(θ)ν(dx)λ(dθ)

Using Fubini and since we know that
p(x|θ)p(θ) = p(θ|x)pX(x) almost
surely

=

∫
E
pX(x)ν(dx)

∫
Θ
`(δ(x), θ)p(θ|x)λ(dx).

What is remarkable with this rewriting is that in order to minimize
RB(δ, µ), we need to minimize, for any fixed x ∈ E, the quantity

Once again, T is a random variable with
distribution µ(dθ) = p(θ)λ(dθ)

∫
Θ
`(δ(x), θ)p(θ|x)λ(dθ) = E[`(δ(X), T )|X = x],

namely the expectation of the loss with respect to the posterior distri-
bution given by Definition 4.3. This leads to the following definition of
a Bayes estimator.
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6: This comes from the fact that if X is
an integrable real random variable with
distribution function F , a minimizer of
t 7→ E|X − t| is given by the median
F−1(1/2) of X .

Definition 4.4 Given a prior µ(dθ) = p(θ)λ(dθ), a modelPθ(dx) =

p(x|θ)ν(dx) and a loss `, any estimator θ̂(X) defined as such an estimator is not necessarily
unique

θ̂(x) ∈ argmin
t∈Θ

∫
Θ
`(t, θ)p(θ|x)λ(dθ) = argmin

t∈Θ
E[`(t, T )|X = x],

namely a minimizer of the expectation of the loss with respect to the
posterior distribution, is called a Bayes or a Bayesian estimator.

For the square loss `(θ′, θ) = (θ′ − θ)2, the Bayes estimator is given
by the expectation of the posterior distribution. Indeed, it is easy to see
that

θ̂(x) = argmin
t∈R

∫
Θ

(t− θ)2p(θ|x)λ(dθ) =

∫
Θ
θp(θ|x)λ(dθ). (4.9)

If `(θ′, θ) = |θ′ − θ|, we can see that

θ̂(x) = argmin
t∈R

∫
Θ
|t− θ|p(θ|x)λ(dθ) = F−1

x (1/2),

where F−1
x (1/2) is the median of the posterior distribution. Here, the

notation F−1
x stands for the generalized inverse of the distribution

function Fx(θ) =
∫ θ
−∞ p(θ

′|x)λ(dθ′) of the posterior distribution.6

Recipe

On some examples, we can compute explicitly the posterior distri-
bution. Given the data density p(x|θ) and the prior density p(θ), the
joint density of the data and the prior is p(x|θ)p(θ) and we know
from Definition 4.3 that the posterior density is proportional to the
joint density, namely

p(θ|x) = constant(x)p(x|θ)p(θ),

where constant(x) = 1/
∫

Θ p(x|θ)p(θ)λ(dθ). So, using the fact
that the integral of the posterior density with respect to θ equals 1,
we can try to identify directly the posterior distribution by having a
careful look at p(x|θ)p(θ), together with some coffee, and looking
for a density with respect to θ.

4.5 Examples

Let us give some standard examples of priors and data distributions
where can apply this recipe.



4 Bayesian statistics 62

Figure 4.1: How to choose a restaurant?
Is a restaurant with a good rating but
few rates better than a restaurant with a
slightly worse rating but more rates?

4.5.1 How to choose a restaurant ? (Bayesian coin flip)

The first example is, once again, a coin flip, but this time with a
Bayesian flavor. Consider the data distribution X ∼ Binomial(n, θ),
namely the model with density

p(x|θ) =

(
n

x

)
θx(1− θ)n−x1{0,...,n}(x)

with respect to the counting measure ν on N and the flat prior on θ
with distribution Uniform([0, 1]) on θ, namely a density

p(θ) = 1[0,1](θ)

with respect to the Lebesgue measure λ.

This model can be useful to help us choose a restaurant: given a restau-
rant, θ is the unknown probability that a customer is happy (1) or
unhappy (0) with it and n is the number of customers who gave their
(binary) opinion. We have no prior information on θ, so we consider the
flat prior. For each restaurant, we observe the percentage of happy cus-
tomers (rescaled to a 0 to 5 stars rating in Figure 4.1) and the number
n of customers who rated it, so X stands here for the number of happy
customers among the n who rated it. Assuming that the customers
opinions are independent, we have X ∼ Binomial(n, θ). The question
is the following: how can we choose a restaurant? Is a restaurant with a
good rating but few rates better than a restaurant with a slightly worse
rating but more rates?

Using the previous recipe, we know that the density of the posterior
distribution is proportional to the density of the joint distribution of the
data and prior

p(x, θ) = p(x|θ)p(θ) =

(
n

x

)
θx(1− θ)n−x1[0,1](θ)1{0,...,n}(x)

with respect to the product measure ν⊗λ. This means that the posterior
density is proportional to 7→ θx(1− θ)n−x1[0,1](θ). We recognize the
density

θ 7→ 1

β(a, b)
θa−1(1− θ)b−11[0,1](θ)

of the Beta(a, b) distribution, that we introduced in Section 3.3.1 of
Chapter 3, where we recall that β(a, b) =

∫ 1
0 t

a−1(1 − t)b−1dt =

Γ(a)Γ(b)/Γ(a+ b). Therefore, we know that the posterior distribution
is Beta(x+ 1, n− x+ 1), namely

p(θ|x) =
1

β(x+ 1, n− x+ 1)
θx(1− θ)n−x1[0,1](θ)
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Figure 4.2: “Essai philosophique sur
les probabilités” by Pierre-Simon
Laplace (1814) in which is introduced
the rule of succession formula in order
to “solve” the sunrise problem (What
is the probability that the sun will rise
tomorrow ?).

If B ∼ Beta(a, b), we know that

E[Z] =
a

a+ b
and V[Z] =

ab

(a+ b)2(a+ b+ 1)
.

If we consider the square loss for the estimation of θ, we know from
Equation (4.9) that the Bayesian estimator is given by the expectation
of the posterior, namely

θ̂ =
X + 1

X + 1 + n−X + 1
=
X + 1

n+ 2
.

Note the difference with the frequentist (non-Bayesian) estimator X/n
that we considered all along Chapter 2 (it was denoted Sn/n back
then). This estimator gives a cute Bayesian answer to the restaurant
selection problem. This estimator is also known as the Laplace’s rule
of succession (see [17] [17]: Wikipedia (2020), Rule of

succession
and Figure 4.2).

Using the bias-variance formula (2.2) from Chapter 2, we can compute
the quadratic risk of θ̂ as follows:

Eθ[(θ̂ − θ)2] = Vθ[θ̂] + (Eθ[θ̂]− θ)2

=
nθ(1− θ)
(n+ 2)2

+
(1− 2θ

n+ 2

)2

=
nθ − nθ2 + 1− 4θ + 4θ2

(n+ 2)2
,

so that the Bayes risk with uniform prior µ(dθ) = p(θ)dθ where
p(θ) = 1[0,1](θ) is given by

RB(θ̂, µ) =

∫ 1

0
Eθ[(θ̂ − θ)2]dθ =

1

6(n+ 2)
.

Using the exact same arguments, it is easy to see that if we use the prior
distribution Beta(a, b) instead of Uniform([0, 1]) (which is a particular
case, since Uniform([0, 1]) = Beta(1, 1)) the posterior distribution is
given by

p(θ|x) = Beta(a+ x, b+ n− x+ b),

which leads to a Bayesian estimator (for the square loss) given by

θ̂ =
X + a

n+ a+ b
.

In this example, the prior and the posterior both belong to the family of
Beta distributions. In such a case, we say that the Binomial and Beta

distributions are conjugated, which corresponds to a situation where
the posterior distribution can be explicitly computed.

Definition 4.5 (Conjugated distributions) Given a prior µ(dθ) =

p(θ)λ(dθ) and a model Pθ(dx) = p(x|θ)ν(dx), we say that the
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distributions of the prior and of the model are conjugated whenever
the prior and the posterior distribution belong to the same family of
distributions.

4.5.2 Gaussian sample with a Gaussian prior

Another classical example is with the Gaussian distribution. Consider
data X1, . . . , Xn iid with Normal(θ, σ2) distribution, namely

p(x|θ) = const(σ) exp
(
− 1

2σ2

n∑
i=1

(xi − θ)2
)
,

where x = [x1 · · ·xn]> and const(σ) is a constant which depends only
on σ and a prior Normal(0, τ2) distribution on θ, namely

p(θ) = const(τ) exp
(
− θ2

2τ2

)
.

We proceed as previously and write the joint distribution

p(x|θ)p(θ) = const(σ, τ) exp
(
− 1

2σ2

n∑
i=1

(xi − θ)2 − θ2

2τ2

)
= const(σ, τ, x) exp

(
− 1

2

( n
σ2

+
1

τ2

)
θ2 +

1

σ2

n∑
i=1

xiθ

)

= const(σ, τ, x) exp

(
− 1

2γ

(
θ − γ

σ2

n∑
i=1

xi

)2
)
,

where we put γ = σ2/(n+ σ2/τ2). This proves that

p(θ|x) = Normal

(
1

n+ σ2/τ2

n∑
i=1

xi,
σ2

n+ σ2/τ2

)
,

and that the Bayes estimator for the square loss is given by

θ̂ =
1

n+ σ2/τ2

n∑
i=1

Xi.

This proves, in particular, that the Gaussian family is conjugated with
itself.

4.5.3 Bayesian linear regression with a Gaussian prior

Another very interesting example is the Gaussian linear regression
model that we considered in Section 3.3 of Chapter 3, where

Yi = X>i θ + εi
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7: since L(t) = E[‖Z − t‖2] for t ∈
Rd is minimized at t∗ = E[Z] when-
ever E[‖Z‖2] < +∞

8: since the mode and the expectation
of a Gaussian distribution are the same

with deterministic Xi ∈ Rd and iid εi ∼ Normal(0, σ2). This means
that y ∼ Normal(X θ, σ2 In), where we recall that y = [Y1 · · ·Yn]>

and that X is the n×dmatrix with rows given byX1, . . . , Xn. We con-
sider this model in a Bayesian setting, by using a Normal(0, λ−1 Id)

prior on θ, where λ > 0. The joint distribution of (θ,y) is given by

p(θ,y) = const(σ, λ) exp
(
− 1

2σ2
‖y−X θ‖2 − λ

2
‖θ‖2

)
.

What is, in this setting, the posterior distribution p(θ|y) ? This is
slightly more complicated than what we did in both previous examples,
and deserves the next theorem.

Theorem 4.1 Consider the Gaussian linear model, namely the data
distribution

p(y |θ) = Normal(X θ, σ2 In)

with prior
p(θ) = Normal(0, λ−1 Id)

for some λ > 0. Then, we have

p(θ|y)

= Normal
(

(X>X +λσ2 Id)
−1 X> y, σ2(X>X +λσ2 Id)

−1
)
.

The proof of Theorem 4.1 is given in Section 4.6 below. If we consider
the square loss `(θ′, θ) = ‖θ′ − θ‖2 where ‖ · ‖ is the Euclidean norm
on Rd, we have that the Bayesian estimator is the expectation7 of the
posterior distribution, namely

θ̂ = (X>X +λσ2 Id)
−1 X> y .

In this example, the Bayes estimator coincides8 with the so-called
MAP estimator (Maximum A Posteriori), which is given, when it exists,
by the mode of the posterior distribution.

We could have computed the MAP estimator without computing the
posterior distribution. Indeed, we know that the posterior distribution
p(y |θ) is proportional to the joint distribution p(θ,y), hence propor-
tional to

exp
(
− 1

2σ2
‖y−X θ‖2 − λ

2
‖θ‖2

)
,

so that maximizing this function with respect to θ corresponds to
minimizing

F (θ) = ‖y−X θ‖2 + σ2λ‖θ‖2.

The function F is strongly convex on Rd, since its Hessian satisfies
∇2F (θ) = 2X>X +2σ2λ Id < σ2λ Id � 0 for any θ ∈ Rd. So, its
unique global minimizer cancels out the gradient

∇F (θ) = 2X>(X θ − y) + 2σ2λθ,
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9: it might be unique or not, depending
on pen and X

10: and eventually take arbitrary large
values, whenever the conditioning of X
is bad for instance

11: which is θ̂λ with λ = 0

12: since it “parametrizes” the parame-
ters...

Show the regularization path
of the ridge estimator on a
dataset

and is therefore equal to

θ̂ = (X>X +2σ2λ Id)
−1 X> y,

as announced above. This estimator corresponds to a regularized or
penalized version of the least-squares estimator. Any minimizer of

θ̂pen = argmin
θ∈Rd

{
‖y−X θ‖2 + pen(θ)

}
,

where pen : Rd → R+ is a so-called penalization, is called a penalized
least-squares estimator.9 A penalization function pen typically satisfies
pen(0) = 0 and that pen(θ) is a non-increasing function with respect
to the absolute value of each coordinate of θ, so that pen penalizes the
fact that θ has large coordinates.

Ridge penalization. Whenever pen(θ) = λ‖θ‖2, we call pen the
ridge penalization and the problem is called ridge regression. This
penalization “forces” the coordinates of θ ∈ Rd to remain “small”. It
is the most widely used form of penalization in statistics and machine
learning and it is used way beyond the setting of least-squares regres-
sion. For instance, this penalization is used in deep learning under the
name Weight decay.

A prior is a form of regularization. Interestingly, we observe in this
example that for the model of Gaussian linear regression, an isotropic
Gaussian prior p(θ) = Normal(0, λ−1 Id) acts exactly as a ridge
penalization, which forbids the coordinates of θ to be free.10 Given
λ > 0, we define the minimizer of the ridge regression problem as

θ̂λ = argmin
θ∈Rd

{
‖y−X θ‖2 + λ‖θ‖2

}
. (4.10)

Whenever λ is very small, then the prior is almost "flat" which is equiv-
alent to the fact that the ridge penalization term in (4.10) is negligible.
In this case, we expect θ̂λ to be close to the least-squares estimator
θ̂0.11 On the other hand, if λ is large, the prior is highly concentrated
around 0, which is equivalent to a very strong ridge penalization in the
computation of θ̂λ.

The parameter λ > 0 used in the ridge penalization correspond to a
regularization strength. It is also called in machine learning a hyper-
parameter12 , which is tuned in practice using cross-validation.
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13: The precision matrix is the inverse
of the covariance matrix

4.6 Proofs

4.6.1 Proof of Theorem 4.1

Let us first recall that the prior is given by

p(θ) = const(λ) exp
(
− λ

2
‖θ‖2

)
and that the model is given by

p(y |θ) = const(σ) exp
(
− 1

2σ2
‖y−X θ‖2

)
,

so that the logarithm of the joint density of (θ,y) writes

log p(θ,y) = log p(θ) + log p(y |θ)

= const(σ2, λ)− 1

2σ2
(y−X θ)>(y−X θ)− λ

2
θ>θ.

Let us develop and rewrite this expression as a quadratic form with
respect to (θ,y) (forgetting about the constant terms):

1

σ2
y>y − 2

σ2
y>X θ +

1

σ2
θ>X>X θ + λθ>θ

=

[
θ

y

]> [ 1
σ2 X

>X +λ Id − 1
σ2 X

>

− 1
σ2 X

1
σ2 In

] [
θ

y

]
=

[
θ

y

]>
K

[
θ

y

]
.

This computation proves that the joint distribution of (θ,y) is Gaussian
with precision matrix K,13 namely

p(θ,y) = Normal(0,K−1).

Now, in order to obtain the posterior distribution p(θ|y), we need to
compute the conditional density of θ knowing y from the joint distribu-
tion of (θ,y). Since the joint distribution is Gaussian, it turns out to be
particularly easy, as explained in the following proposition.

Proposition 4.2 Let Z be a Gaussian vector Z ∼ Normal(µ,Σ) on
Rm with Σ � 0. We consider the decomposition of Z, and of its
expectation and covariance matrix, into two blocks Xa and Xb as
follows

X =

[
Xa

Xb

]
, µ =

[
µa
µb

]
and Σ =

[
Σa,a Σa,b

Σ>a,b Σb,b

]
.
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We decompose in the same way the precision matrix, namely

K = Σ−1 =

[
Ka,a Ka,b

K>a,b Kb,b

]
. (4.11)

Then, the conditional density of Xa knowing Xb is given by

pXa|Xb(xa|xb) = Normal
(
µa −K−1

a,aKa,b(xb − µb), K−1
a,a

)
,

where we used the precision matrix K. We can also compute the
conditional density as

pXa|Xb(xa|xb)

= Normal
(
µa + Σa,b Σ−1

b,b (xb − µb), Σa,a−Σa,b Σ−1
b,b Σ>a,b

)
,

where we used this time the covariance Σ.

The proof of Proposition 4.2 is given below. In order to compute the
posterior p(θ|y), we use Proposition 4.2 with Xa = θ, Xb = y,
µa = 0, µb = 0 and the precision matrix

K =

[
Ka,a Ka,b

K>a,b Kb,b

]
=

[
1
σ2 X

>X +λ Id − 1
σ2 X

>

− 1
σ2 X

1
σ2 In

]
.

Namely, we obtain that p(θ|y) = Normal(µθ|y, Σθ|y) with

µθ|y = µa −K−1
a,aKa,b(xb − µb) =

(
X>X +λσ2 Id

)−1
X> y,

and
Σθ|y = K−1

a,a = σ2
(
X>X +λσ2 Id

)−1
,

which concludes the proof of Theorem 4.1.

Proof of Proposition 4.2. We have that

log p(Xa,Xb)(xa, xb) = const(K)− 1

2
(x− µ)>K(x− µ)

and that

(x− µ)>K(x− µ)

= (xa − µa)>Ka,a(xa − µa) + (xa − µa)>Ka,b(xb − µb)
+ (xb − µb)>K>a,b(xa − µa) + (xb − µb)>Kb,b(xb − µb)

= (xa − µa + K−1
a,aKa,b(xb − µb))>Ka,a

× (xa − µa + K−1
a,aKa,b(xb − µb)) + const(µ,K, xb).
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We know that pXa |Xb(xa|xb) is proportional to p(Xa,Xb)(xa, xb), so
we already know from the previous computation that

pXa|Xb(xa|xb) = Normal
(
µa −K−1

a,aKa,b(xb − µb), K−1
a,a

)
.

Now, in order to express pXa|Xb through the covariance Σ, we need to
compute the inverse of Σ. Let us recall the following classical block
inversion formula[

A B

C D

]−1

=

[
S −SBD−1

−D−1 C S D−1 +D−1 C SBD−1

]
,

where S = (A−BD−1 C)−1 is called the Schur complement with
respect to the block D. We use this formula to compute

K =

[
Ka,a Ka,b

K>a,b Kb,b

]
=

[
Σa,a Σa,b

Σ>a,b Σb,b

]−1

.

This gives us

Ka,a = S = (A−BD−1 C)−1 = (Σa,a−Σa,b Σ−1
b,b Σ>a,b)

−1

and

K−1
a,aKa,b = −S−1 SBD−1 = −BD−1 = −Σa,b Σ−1

b,b ,

so that

µa −K−1
a,aKa,b(xb − µb) = µa + Σa,b Σ−1

b,b (xb − µb),

which concludes the proof of Proposition 4.2. �

4.6.2 Proof of the lower bound from Theorem 3.4

We have now all the tools required to prove the lower bound involved
in Theorem 3.4 from Chapter 3, namely that

inf
θ̂

sup
P∈G(PX ,σ2)

E‖θ̂ − θ∗‖2Σ ≥
σ2

n
E[tr(Σ̃

−1
)], (4.12)

where we recall that Σ = E[XX>] � 0 and that G(PX , σ2) is the
set of joint distributions P for (X,Y ) satisfying X ∼ PX , Y =

X>θ∗ + ε almost surely and ε independent of X and such that ε ∼
Normal(0, σ2). Let us recall also that θ̂ is any estimator, namely any
measurable function of (X1, Y1), . . . , (Xn, Yn) iid with the same dis-
tribution P ∈ G(PX , σ2).

First, let us remark that supP∈G(PX ,σ2) corresponds to supθ∗∈Rd , so
that denoting Pθ∗ = PX,Y and the corresponding expectation Eθ∗ , we
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need to lower bound

inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖2Σ.

The first, and certainly most important trick, is to lower bound the
minimax risk by the Bayes risk. Let us choose some prior distribution
Π(dθ) = p(θ)dθ for θ and write

inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖2Σ ≥ inf
θ̂

∫
Rd

Eθ‖θ̂ − θ‖2Σ p(θ)dθ

= inf
θ̂
Eθ∼ΠEθ‖θ̂ − θ‖2Σ. (4.13)

Let us reason conditionally on X1, . . . , Xn in what follows to simplify
notations and use Bayesian reasoning where the data has density

p(y |θ) = Normal(X θ, σ2 In)

and where the prior on θ is given by Πλ(dθ) = pλ(θ)dθ with

pλ(θ) = Normal
(

0,
σ2

λn
Id

)
for some λ > 0. Note that this example is exactly the one considered
in Section 4.5.3 with λ′ = n λ/σ2 instead of λ. So, using Theorem 4.1,
we have that

p(θ|y) = Normal
(
θ̂λ,

σ2

n
(X>X +λ Id)

−1
)

where

θ̂λ = (X>X +nλ Id)
−1 X> y

= argmin
θ∈Rd

( 1

n
‖y−X θ‖2 + λ‖θ‖2

) (4.14)

is the ridge-penalized least squares estimator. The second trick is that
we know how to minimize the Bayes risk (4.13): it can be minimized
by looking for

θ̂ ∈ argmin
θ′∈Rd

∫
Rd
‖θ′ − θ‖2Σ p(θ|y)dθ,

as explained in Section 4.4. But, let us remark that if Z is a random
vector such that E‖Z‖2 <∞, then the function F : Rd → R+ given
by F (t) = E‖Z − t‖2Σ is minimized at t∗ = E[Z] whenever Σ � 0.
This entails that the Bayes estimator for the loss `(θ′, θ) = ‖θ′ − θ‖2Σ
is indeed θ̂λ. So, we end up with the lower bound

inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖2Σ ≥
∫
Rd

Eθ‖θ̂λ − θ‖2ΣΠλ(dθ)

= Eθ∼ΠλEθ[E(θ̂λ)]



4 Bayesian statistics 71

for any λ > 0, that we are able to compute exactly thanks to the next
Lemma. Let us recall that Σ̂ = n−1 X>X = n−1

∑n
i=1XiX

>
i and

introduce Σ̂λ = Σ̂ + λ Id.

Lemma 4.3 The excess risk of the ridge estimator θ̂λ given by (4.14)
is given by

Eθ[E(θ̂λ)] = λ2E‖θ‖2
(Σ̂λ)−1 Σ(Σ̂λ)−1

+
σ2

n
E tr

(
(Σ̂λ)−1 Σ(Σ̂λ)−1Σ̂

)
under the assumption that Yi = X>i θ + εi for εi ∼ Normal(0, σ2).

We inject the formula given by Lemma 4.3 to end up with the lower
bound

Eθ∼Πλ

[
λ2E‖θ‖2

(Σ̂λ)−1 Σ(Σ̂λ)−1 +
σ2

n
E tr

(
(Σ̂λ)−1 Σ(Σ̂λ)−1Σ̂

)]
.

So, using Fubini, and since Eθ∼Πλ [θθ>] = σ2

λn Id by definition of Πλ,
we end up with

Eθ∼Πλ

[
λ2E‖θ‖2

(Σ̂λ)−1 Σ(Σ̂λ)−1

]
using tr[x] = x for x ∈ R= λ2 E Eθ∼Πλ tr

[
θ>(Σ̂λ)−1 Σ(Σ̂λ)−1θ

]
= λ2 E Eθ∼Πλ tr

[
(Σ̂λ)−1 Σ(Σ̂λ)−1θθ>

]
=
σ2

n
E tr

[
(Σ̂λ)−1 Σ(Σ̂λ)−1λ Id

]
,

so that the lower bound becomes now

σ2

n
E tr

[
(Σ̂λ)−1 Σ(Σ̂λ)−1(Σ̂ + λ Id)

]
=
σ2

n
E tr

[
(Σ̂λ)−1 Σ

]
.

We proved that the lower bound

inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖2Σ ≥
σ2

n
E tr

[
(Σ̂λ)−1 Σ

]
holds for any λ > 0. Since PX is non-degenerate, we know from
Theorem 3.1 that Σ̂ � 0 almost surely and we have that the function

λ 7→ tr
[
(Σ̂ + λ Id)

−1 Σ
]

= tr
[
(Σ−1/2 Σ̂ Σ−1/2 +λΣ−1)−1

]
is decreasing on (0,+∞) since λ2 Σ−1 � λ1 Σ−1 whenever λ2 > λ1.
So, by monotone convergence, we have indeed that

E tr
[
(Σ̂λ)−1 Σ

]
→ E tr

[
(Σ̂)−1 Σ

]
= E tr

[
(Σ̃)−1

]
as λ→ 0+. This proves the desired lower bound of the minimax risk,
up to the proof of Lemma 4.3. �
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Proof of Lemma 4.3. Let us recall that Yi = X>i θ + εi with εi ∼
Normal(0, σ2) and that each εi is independent of X1, . . . , Xn. We
have

1

n

n∑
i=1

YiXi =
1

n

n∑
i=1

XiX
>
i θ +

1

n

n∑
i=1

εiXi = Σ̂θ +
1

n

n∑
i=1

εiXi,

so that

Eθ[E(θ̂λ)] = Eθ‖θ̂λ− θ‖2Σ = E
∥∥∥(Σ̂λ)−1

(
Σ̂θ+

1

n

n∑
i=1

εiXi

)
− θ
∥∥∥2

Σ
,

but using (Σ̂λ)−1(Σ̂ + λ Id−λ Id) = Id−λ(Σ̂λ)−1 we obtain

Eθ[E(θ̂λ)] = E
∥∥∥(Σ̂λ)−1 1

n

n∑
i=1

εiXi − λ(Σ̂λ)−1θ
∥∥∥2

Σ

= E
[
E
[∥∥∥ 1

n

n∑
i=1

εiXi − λθ
∥∥∥2

(Σ̂λ)−1 Σ(Σ̂λ)−1

∣∣∣∣X1, . . . , Xn

]]

= E
[
E
[∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥2

(Σ̂λ)−1 Σ(Σ̂λ)−1

∣∣∣∣X1, . . . , Xn

]]
+ λ2E‖θ‖2

(Σ̂λ)−1 Σ(Σ̂λ)−1

=
σ2

n2
E
[ n∑
i=1

‖Xi‖2(Σ̂λ)−1 Σ(Σ̂λ)−1

]
+ λ2E‖θ‖2

(Σ̂λ)−1 Σ(Σ̂λ)−1 ,

where we used repeatedly that E[εi|X1, . . . , Xn] = 0, E[εiεj |X1, . . . , Xn] =

0 for any i 6= j and E[ε2
i |X1, . . . , Xn] = σ2. But

1

n

n∑
i=1

‖Xi‖2(Σ̂λ)−1 Σ(Σ̂λ)−1 =
1

n

n∑
i=1

tr
[
(Σ̂λ)−1 Σ(Σ̂λ)−1XiX

>
i

]
= tr

[
(Σ̂λ)−1 Σ(Σ̂λ)−1Σ̂

]
,

which concludes the proof of Lemma 4.3. �
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This chapter is about high-dimensional statistics, in particular high-
dimensional linear regression, which corresponds to a setting where the
sample size n is smaller than the number of features d. Let us consider
again the Gaussian linear model (see Chapter 3), where we observe
labels satisfying

Yi = f(Xi) + εi

for i = 1, . . . , n, where Xi ∈ Rd are vectors of features that we
assume deterministic, where ε1, . . . , εn are i.i.d Normal(0, σ2) ran-
dom variables and where f is the regression function that we want to
estimate.

Sparse estimation. We consider a set F = {f1, . . . , fM} of func-
tions called a dictionary, with M which can be much larger than the
sample size n. We want to learn from data an estimator of f of the
form

fθ(x) =

M∑
j=1

θjfj(x)

with the following properties: the empirical estimation error

1

n

n∑
i=1

(fθ(Xi)− f(Xi))
2

is small and the sparsity of θ, namely

‖θ‖0 = |J(θ)| = |{j = 1, . . . ,M : θj 6= 0}|, (5.1)

where |J | stands for the cardinality of a set J , is small compared
to M . If we are able to satisfy both points, we say that we can find a
sparse linear combination of elements of F to estimate f . This task
is called sparse coding or sparse estimation, since it would allow to
select a subset of elements from a typically redundant dictionary F
to estimate f . Of course, if M = d and fj(x) = xj , we recover the
standard linear regression model, where fθ(x) = x>θ.

Let us introduce a bunch of notations before diving into the main matter.
Here, the features matrix is a n×M matrix given by

X =

f1(X1) · · · fM (X1)
...

. . .
...

f1(Xn) · · · fM (Xn)

 =

X
>
1

...
X>n

 =
[
X1 · · ·XM

]
.
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Let us introduce also

y =

Y1
...
Yn

 , f =

f(X1)
...

f(Xn)

 , f θ =

fθ(X1)
...

fθ(Xn)

 , ε =

ε1
...
εn

 .
The problem can be rewritten as a Gaussian linear model

y = X θ + ε

from Chapter 3, however this time we can have M � n, namely the
matrix X can be overdetermined: it is not full-rank, in this case we say
that the dictionary F is redundant. The notation ‖u‖ will stand for the
Euclidean norm of u ∈ Rn.

Oracle inequalities. We are looking for an estimator θ̂n such that
‖θ̂n‖0 �M and

1

n
‖f

θ̂n
− f‖2 ≤ inf

θ∈RM

{ 1

n
‖f θ − f‖2 + remainder(θ)

}
(5.2)

where remainder is, ideally, a small quantity that depends on θ, but
might depend also on n,F and σ2. If remainder is small, then such an
inequality would prove that the estimator f

θ̂n
performs almost as well

as the best linear combination f? = fθ? of elements from F , where
θ? ∈ argminθ∈RM ‖f θ − f‖2. We say that f? is an oracle, since it
depends on f , and an inequality of the form (5.2) is called an oracle
inequality.

This raises the following questions:

I How can we construct a sparse estimator θ̂n ?
I What is the value of remainder in the inequality (5.2) ?

We will deal with this problem using a penalization which incudes spar-
sity in θ. We already talked about the Ridge penalization in Chapter 4,
which corresponds to the estimator

θ̂ridgen = argmin
θ∈RM

{ 1

n

n∑
i=1

(Yi − fθ(Xi))
2 +

λ

2
‖θ‖2

}
, (5.3)

where ‖θ‖ is the Euclidean norm of θ, also called `2-norm. We proved
in Chapter 4 that this penalization can be understood as an isotropic
Gaussian prior in the Gaussian linear model, and that θ̂ridgen is the
unique solution to the linear system

(X>X +nλ I)θ = X> y,

which has no obvious reasons of being sparse.
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1: The convex envelope of g : [a, b]→
R is, at each point x ∈ [a, b], the supre-
mum of all convex functions that lie un-
der g, namely genv(x) = sup{h(x) :

h convex and h ≤ g over [a, b]}.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

||x||1
||x||0

Figure 5.1: The convex envelope of
x 7→ ‖x‖0 over [−1, 1] is x 7→ ‖x‖1.

2: If C is a polyhedron C : {x ∈ Rd :

Ax ≤ b}, then we say that the con-
straints are linear.

In this chapter, we will consider another penalization which involves
the `1 norm, since as explained in what follows, it leads to a simple
convex problem which defines a sparse estimator θ̂lasson , coming from a
convex relaxation principle. This estimator is called the Lasso (Least
Absolute Shrinkage and Selection Operator), introduced in [18] [18]: Tibshirani (1996), ‘Regression

shrinkage and selection via the lasso’
and is

given by

θ̂lasson = argmin
θ∈Θ

{ 1

n

n∑
i=1

(Yi − fθ(Xi))
2 + λ‖θ‖1

}
, (5.4)

where ‖θ‖1 =
∑M

j=1 |θj | is the `1 norm of θ and where Θ ⊂ RM is a
convex set, main examples being

I The whole set Θ = RM (no constraint)
I The set Θ = [0,+∞)M (positivity constraint)
I The set θ = [−R,R]M for some R > 0 (box constraint)

In order to induce sparsity, it is tempting to use as a penalization the
"`0 norm", but this leads to a problem where we would need to try out
all subsets J ⊂ {1, . . . ,M} and train a linear model on each subset of
coordinates J , which means 2M problems to solve.

Convex relaxation. The `1 can be understood as a convex relaxation
of `0. Indeed, it is easy to see that the convex envelope1 of the function
g0(x) = 1x6=0 over the interval [−1, 1] is given by g1(x) = |x|, so that
the convex envelope of x 7→ ‖x‖0 over [−1, 1]M is x 7→ ‖x‖1, see
Figure 5.1.

The `1 norm therefore appears naturally as a convex relaxation of
`0. Another way of understanding it is to consider the following con-
strained optimization problem

min ‖x‖0
such that x ∈ C and ‖x‖∞ ≤ R,

where C is a convex set2 which can be reformulated as

min 1> u

such that u ∈ {0, 1}M , |xi| ≤ Rui for all i = 1, . . . ,M

x ∈ C

Such an optimization problem is called a "linear mixed integer pro-
gram" whenever C is a polyhedron. It is hard to solve exactly, since it
requires to try out all possible vectors u ∈ {0, 1}M . A convex relax-
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Figure 5.2: Soft-thresholding and
shrinkage with λ = 1 on a single co-
ordinate.

1/2-ball

1-ball

3/2-ball

2-ball

Figure 5.3: Some `p balls in R2. The
`1 ball is convex but has spiky corners

ation of this problem is

min 1> u

such that u ∈ [0, 1]M , |xi| ≤ Rui for all i = 1, . . . ,M

x ∈ C

which can be rewritten as

min
1

R
‖x‖1

such that x ∈ C and ‖x‖∞ ≤ R,

where we see that, once again, the `1 norm naturally appears.

Soft-thresholding. A straightforward computation allows to under-
stand that the `1 norm induces sparsity. Indeed, we can see easily that

argmin
a∈R

{1

2
(a− b)2 + λ|a|

}
= sign(b)(|b| − λ)+ (5.5)

for any b ∈ R, where x+ = max(x, 0) and sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0 and sign(0) = 0. This proves that

argmin
a∈RM

{1

2
‖a− b‖22 + λ‖a‖1

}
= Tλ(b) (5.6)

for any b ∈ RM , where Tλ : RM → RM is the soft-thresholding
operator given by

(Tλ(b))j = sign(bj)(|bj | − λ)+

for j = 1, . . . ,M , see Figure 5.2. We display also in Figure 5.2 the
shrinkage operator (Sλ(b))j = bj/(1 + λ), which corresponds to the
Ridge penalization, since argmina∈R{ (a−b)2+λa2} = b/(1+λ).

We observe that the shrinkage operator, which corresponds to the
Ridge penalization, does not induce sparsity, while soft-thresholding
does. The fact that the `1 norm induces sparsity (coordinates can be 0)
actually comes from the fact that the absolute value is not differentiable
at 0. It can be understood geometrically as well, using the fact that
a unit `1 ball has sparse corners at ±ej for j = 1, . . . ,M (canonical
basis vectors) that are sparse vectors: when we project a point onto an
`1 ball, we are likely to project onto a corner or an edge, that are sets
of sparse points.

The discussion above motivates the use of the `1 norm to induce sparsity.
Let us therefore consider the estimator θ̂lasson given by (5.4), that we
will simply denote θ̂n in the rest of the chapter. In order to study the
statistical properties of this estimator, we need some tools from convex
optimization.
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Figure 5.4: An illustration of the sub-
gradients of a convex function at x =
−1. The subdifferential is equal to the
interval [−0.4, 1].
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Figure 5.5: An illustration of for-
mula (5.9).

5.1 Some tools from convex optimization

Let us consider a convex function φ : Rd → R. A fundamental no-
tion which generalizes the differential to non-differentiable convex
functions is the subdifferential, see Figure 5.4.

Definition 5.1 We say that g ∈ Rd is a subgradient of a convex
function φ : Rd → R at u ∈ Rd if and only if

φ(v)− φ(u) ≥ g>(v − u) (5.7)

for any v ∈ Rd. The set of all subgradients

∂φ(u) =
{
g ∈ Rd : φ(v)− φ(u) ≥ g>(v − u) for all v ∈ Rd}

is called the subdifferential of φ at u.

An example is with φ(u) = |u|, where we have ∂φ(u) = {1} if u > 0,
∂φ(u) = {−1} if u < 0 and ∂φ(u) = [−1, 1] if u = 0. Whenever
φ is differentiable at u, we have obviously that ∂φ(u) = {∇φ(u)}.
Another obvious claim is that

u? ∈ argmin
u∈Rd

φ(u) if and only if 0 ∈ ∂φ(u?).

Also, it is easy to see that

∂
( K∑
k=1

αkφk(u)
)

=

K∑
k=1

αk∂φk(u)

whenever αk ≥ 0 and φk are convex functions for all k = 1, . . . ,K.
Another nice formula allows to express the subdifferential of a max-
imum of convex functions with the subdifferential of each function.
Indeed, if φ(u) = maxKk=1 φk(u), we have

∂φ(u) = conv
( K⋃
k=1

{
∂φk(u) : φk(u) = φ(u)

})
, (5.8)

where conv(A) stands for the convex hull of a set A. For instance, if
φ1 : R→ R and φ2 : R→ R are convex and differentiable functions,
we have

∂max(φ1, φ2)(u) =


{φ′2(u)} if φ2(u) > φ1(u)

{φ′1(u)} if φ2(u) < φ1(u)

[φ′1(u), φ′2(u)] if φ2(u) = φ1(u)

(5.9)
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3: using the definition of the subdiffer-
ential

Figure 5.6: Illustration of normal cones

4: Just use Definition 5.1 to write that
φ(u2)−φ(u1) ≥ g>1 (u2−u1) and that
φ(u1)−φ(u2) ≥ g>2 (u1−u2) and add
the two.

Another useful definition is the indicator function of a convex set
C ⊂ Rd

δC(u) =

{
0 if u ∈ C
+∞ if u /∈ C.

If allows to reformulate a constrained problem as an unconstrained
one, namely to rewrite

u? ∈ argmin
u∈C

φ(u) as u? ∈ argmin
u∈Rd

{φ(u) + δC(u)}

which means that 0 ∈ ∂φ(u?) + ∂δC(u?), namely that there is g? ∈
∂φ(u?) such that −g? ∈ ∂δC(u?). But it is easy to understand what
the subdifferential of the indicator function δC is, since g ∈ ∂δC(u?)

with u? ∈ C means3 that

δC(u)− δC(u?) ≥ g>(u− u?) for all u ∈ Rd,

but δC(u?) = 0 so that, for any u ∈ C, we have

∂δC(u) =
{
g ∈ Rd : g>(v − u) ≤ 0 for all v ∈ C

}
,

which is the normal cone to C at u, see Figure 5.6.

This proves the following proposition.

Proposition 5.1 Let φ : Rd → R be a convex function and C ⊂ Rd

be a convex set. An optimality criterion for the problem

u? ∈ argmin
u∈C

φ(u)

is given by

∃g? ∈ ∂φ(u?) such that (g?)>(u− u?) ≥ 0

for all u ∈ C, where ∂φ(u?) is the subdifferential of φ at u?.

Another property about the subdifferential is the following.

Proposition 5.2 (Monotonicity of the subdifferential) Given a con-
vex function φ : Rd → R, any u1, u2 ∈ Rd and any g1 ∈ ∂φ(u1)

and g2 ∈ ∂φ(u2), we have

(u1 − u2)>(g1 − g2) ≥ 0.

The proof is straightforward.4

Subdifferential of `1 norm. Let us give as an example the computa-
tion of the subdifferential of the `1 norm. Put φ(u) = ‖u‖1 and note
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that it can be rewritten as

‖u‖1 = max
{
e>u : e ∈ {−1, 1}d

}
= max

i=1,...,2d
φi(u)

where we introduced φi(u) = e>i u for e1, . . . , e2d the elements of
{−1, 1}d. Note that given u ∈ Rd, we can choose e(u) ∈ Rd such
that e(u)j = 1 if uj > 0, e(u)j = −1 if uj < 0 and e(u)j = 1 or
e(u)j = −1 if uj = 0, in order to obtain that e(u)>u = ‖u‖1. Let us
introduce the set

I(u) =
{
i ∈ {1, . . . 2d} : e>i u = ‖u‖1

}
.

Each function φi is differentiable and∇φi(u) = ei. So, we can apply
Equation (5.8) to obtain that

∂‖u‖1 = conv
( ⋃
i∈I(u)

{ei}
)

=
{

sign(u) + h : h ∈ Rd, ‖h‖∞ ≤ 1, h� u = 0
}
,

(5.10)

where h � u is the Hadamard product given by (h � u)j = hjuj .
For instance if d = 4 and u = [17 − 42 0 3]> then ∂‖u‖1 =

{1} × {−1} × [−1, 1]× {1}.

5.2 Oracle inequalities for the Lasso

The material used in this Section is based on [19, 20] [19]: Bickel et al. (2009), ‘Simulta-
neous analysis of Lasso and Dantzig
selector’
[20]: Koltchinskii et al. (2011),
‘Nuclear-norm penalization and
optimal rates for noisy low-rank matrix
completion’

. Also, a very
nice broader book on the topic of high-dimensional statistics is [21].
Throughout the section, we will assume that the columns are stan-
dardized, namely that ‖Xj ‖2 =

√
n. This is a rather unrestrictive

assumption (we could do without it) that follows good-practice when
using linear methods in machine learning. Let us recall that the Lasso
estimator is given by

θ̂n = argmin
θ∈Θ

{ 1

n

n∑
i=1

(Yi − fθ(Xi))
2 + λ‖θ‖1

}
= argmin

θ∈Θ

{ 1

n
‖y−f θ‖2 + λ‖θ‖1

}
,

(5.11)

for some convex set Θ ⊂ RM , where

λ = 2σ

√
2(x+ logM)

n

with x > 0 which corresponds to a confidence level (see Theorem 5.3
and 5.4 below) and with σ > 0 the standard-deviation of the noise.
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Theorem 5.3 If θ̂n is given by (5.11), we have that

1

n
‖f

θ̂n
− f‖2 ≤ inf

θ∈Θ

{ 1

n
‖f θ − f‖2 + 2λ‖θ‖1

}
with a probability larger than 1− 2e−x.

This inequality is called a slow oracle inequality since the remainder is
O(1/

√
n). The proof of Theorem 5.3 is given in Section 5.3 below. In

order to obtain a faster O(1/n) rate, we need an extra assumption on
the matrix of features X . Let us introduce the M ×M matrix

G =
1

n
X>X =

[ 1

n
〈f j ,f j′〉

]
1≤j,j′≤M

,

where f j = [fj(X1) · · · fj(Xn)] ∈ Rn and 〈·, ·〉 is the inner product
on Rn. Note that if M > n, we have that

min
t∈RM\{0}

√
t>G t

‖t‖
= min

t∈RM\{0}

‖X t‖√
n‖t‖

= 0

since X : RM → Rn and ker(X) 6= {0} hence the smallest eigen-
value of G is zero.

The assumption we are going to use requires that the smallest eigen-
value restricted to sparse vectors is positive. For θ ∈ RM and c0 > 0,
let us introduce the cone

Cθ,c0 =
{
t ∈ RM : ‖tJ(θ){‖1 ≤ c0‖tJ(θ)‖1

}
, (5.12)

where

I J(θ) = {j ∈ {1, . . . ,M} : θj 6= 0} is the support of θ,
I tJ ∈ RM stands for the vector with coordinates (tJ)j = tj if
j ∈ J and (tJ)j = 0 for j /∈ J ,

I J{ = {1, . . . ,M} \ J .

If t ∈ Cθ,c0 , then both the vectors t and θ almost share the same
support, since the coefficients of tJ(θ) dominate those of tJ(θ){ . Then,
we can introduce

µc0(θ) = inf
{
µ > 0 : ‖tJ(θ)‖ ≤

µ√
n
‖X t‖ for all t ∈ Cθ,c0

}
.

(5.13)
Note that the function c0 7→ µc0(θ) is decreasing. If c0 = ∞, then
Cθ,c0 = RM , while if c0 = 0 then Cθ,c0 = {t ∈ RM : J(t) = J(θ)}
and in this case

µc0(θ) =
1

λmin(GJ(θ)×J(θ))1/2

the square-root of the inverse of the smallest eigenvalue of the subma-
trix (G)J×J with J = J(θ) corresponding to the subset of rows and
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5: Suppose by contradiction that there
is t ∈ RM such that ‖t‖0 = 2s

and X t = 0. Then, we can choose
disjoint sets J0, J1 ⊂ {1, . . . ,M}
such that J(t) = J0 ∪ J1 with
|J0| = s and |J1| = s and such
that ‖tJ1‖1 ≤ ‖tJ0‖1. But obviously
‖tJ1‖1 = ‖t

J{
0
‖1 so ‖t

J{
0
‖1 ≤ ‖tJ0‖1,

which contradicts the RE(s, 1) assump-
tion.

columns with index in J .

Theorem 5.4 If θ̂n is given by (5.11) where we replace λ by 2λ, we
have that

1

n
‖f

θ̂n
− f‖2

≤ inf
θ∈Θ

{
1

n
‖f θ − f‖2 + 18µ3(θ)2σ2x+ logM

n
‖θ‖0

}
with a probability larger than 1−2e−x, where µ3(θ) is given by (5.13)
with c0 = 3 and ‖θ‖0 is the sparsity of θ given by (5.1).

The proof of Theorem 5.4 is given in Section 5.3 below. It proves that
the Lasso estimator θ̂n realizes a balance between an approximation or
estimation term ‖f θ − f‖2 and a complexity term which involves the
sparsity of θ.

It is a remarkable theorem, since it shows that the Lasso estimator,
which is the solution of a simple convex problem, is almost as good as
the best sparse representation of f using the dictionary F . Indeed, the
rate obtained herein is of order (logM)‖θ‖0/n, namely the ambient
dimension M appears only through logM , while ‖θ‖0 corresponds to
the "useful" dimension given by the number of elements of F that are
statistically useful to estimate f .

Definition 5.2 (Restricted eigenvalues) We say that X satisfies the
RE(s, c0) assumption for some c0 > 0 and some s ∈ {1, . . . ,M}
whenever

κ(s, c0) = min
J⊂{1,...,M}
|J |≤s

min
t6=0

‖t
J{
‖1≤c0‖tJ‖1

‖X t‖√
n‖tJ‖

> 0.

Note that we have

κ(s, c0) = inf
t∈RM\{0}
‖t‖0≤s

1

µc0(t)
.

Moreover, whenever X satisfies RE(s, 1), any sub-matrix of X formed
by any subset of 2s columns from X has full rank.5

An immediate corollary of Theorem 5.4 is the following oracle inequal-
ity, which holds under the RE(s, 3) assumption:

1

n
‖f

θ̂n
− f‖2 ≤ inf

θ∈Θ
‖θ‖0≤s

{
1

n
‖f θ − f‖2 +

18σ2

κ(s, 3)2

s(x+ logM)

n

}

with a probability larger than 1−e−x. In this inequality, the convergence
rate is of order (s logM)/n, where s is the sparsity of the best θ. Let us
finish this chapter with several remarks before diving into the proofs.
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I The rate of convergence depends on the ambient dimension
M only through logM and depends linearly on the sparsity s
of θ ∈ RM . This is a remarkable property called dimension
reduction or adaptation to the sparsity of the Lasso estimator.

I This is not the optimal rate, the minimax optimal rate among
s-sparse vector (and in a `q ball) being s log(M/s)/n, see [22] [22]: Verzelen (2012), ‘Minimax risks

for sparse regressions: Ultra-high
dimensional phenomenons’

.
I There are several improvements of these oracle inequalities in

literature: beyond Gaussian noise, using the integrated estima-
tor error

∫
RM (f

θ̂n
(x)− f(x))2PX(dx) instead of the empirical

one used here, and we can remove the dependency of λ on the
confidence level x > 0.

I From Theorem 5.4, we can derive bounds on the estimator error
‖θ̂n − θ?‖p (measured by the `p norm, p ≥ 1) of the true param-
eter θ? and the we can give guarantees on the signed support
recovery of the parameter, through controls on the probability
P[sign(θ̂n) = sign(θ?)], see [23] [23]: Zhao et al. (2006), ‘On model

selection consistency of Lasso’

.

5.3 Proofs

5.3.1 Proof of Theorem 5.3

Let us start with the noise. It is fairly easy, since

1

n

n∑
i=1

εifj(Xi) ∼ Normal
(

0,
σ2

n2

n∑
i=1

fj(Xi)
2
)

= Normal
(

0,
σ2

n2
‖Xj ‖2

)
We assumed that ‖Xj ‖ =

√
n= Normal

(
0,
σ2

n

)
.

So, recalling that P[|Z| ≥ z] ≤ 2e−z
2/2 whenever Z ∼ Normal(0, 1)

for any z > 0,we obtain

P
[∣∣∣ 1
n

n∑
i=1

εifj(Xi)
∣∣∣ ≥ σ√2x

n

]
≤ 2e−x

and using an union bound, we obtain that the event

A =

M⋂
j=1

{∣∣∣ 1
n

n∑
i=1

εifj(Xi)
∣∣∣ ≤ σ√2(x+ logM)

n

}

satisfies P[A] ≥ 1− 2e−x. The definition of θ̂ entails that

1

n
‖y−f

θ̂
‖2 + λ‖θ̂‖1 ≤

1

n
‖y−f θ‖2 + λ‖θ‖1 (5.14)
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for any θ ∈ Θ and an easy computation gives

1

n
‖y−f

θ̂
‖2 − 1

n
‖y−f θ‖2

=
1

n
‖f

θ̂
‖2 +

1

n
‖f‖2 +

2

n
〈y,f θ − f

θ̂
〉

=
1

n
‖f

θ̂
‖2 +

1

n
‖f‖2 +

2

n
〈f ,f θ − f

θ̂
〉+

2

n
〈ε,f θ − f

θ̂
〉

=
1

n
‖f

θ̂
− f‖2 − 1

n
‖f θ − f‖2 +

2

n
〈ε,f θ − f

θ̂
〉.

(5.15)

But on the event A, we have that

2

n
|〈ε,f θ − f

θ̂
〉| =

∣∣∣ 2
n

M∑
j=1

(θ̂j − θj)
n∑
i=1

εifj(Xi)
∣∣∣

≤
M∑
j=1

|θ̂j − θj |2σ
√

2(x+ logM)

n

= λ‖θ̂ − θ‖1,

(5.16)

so that, combining Inequalities (5.14), (5.15) and (5.16), we end up
with

1

n
‖f

θ̂
− f‖2 ≤ 1

n
‖f θ − f‖2 + λ‖θ̂ − θ‖1 + λ‖θ‖1 − λ‖θ̂‖1

≤ 1

n
‖f θ − f‖2 + 2λ‖θ‖1,

which concludes the proof of Theorem 5.3. �

5.3.2 Proof of Theorem 5.4

Let us recall that we study the estimator

θ̂ ∈ argmin
θ∈Θ

{
Rn(θ) + 2 pen(θ)

}
, (5.17)

where Θ ⊂ Θ is a convex set, where

Rn(θ) =
1

n

n∑
i=1

(Yi − fθ(Xi))
2 =

1

n
‖y−f θ‖2

is convex and differentiable and pen(θ) = λ‖θ‖1 is convex. We have
∇Rn(θ) = − 2

n X
>(y−X θ) so that

∂(Rn + pen)(θ) = − 2

n
X>(y−X θ) + 2λ∂‖θ‖1.

Using Proposition 5.1, we have that (5.17) is equivalent to the fact that
there is ĝ ∈ ∂‖θ̂‖1 such that〈
− 2

n
X>(y−X θ̂) + 2λĝ, θ̂ − θ

〉
≤ 0 for all θ ∈ Θ. (5.18)
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Let us choose for now an arbitrary θ ∈ Θ and note J = J(θ). We can
rewrite inequality (5.18) as

2

n

〈
X>X θ̂, θ̂ − θ

〉
− 2

n

〈
X> y, θ̂ − θ

〉
+ 2λ〈ĝ, θ̂ − θ〉 ≤ 0,

and, recalling that X θ = f θ and that y = f + ε, we have

2

n
〈f

θ̂
,f

θ̂
− f θ〉 −

2

n
〈f ,f

θ̂
− f θ〉

− 2

n
〈ε,f

θ̂
− f θ〉+ 2λ〈ĝ, θ̂ − θ〉 ≤ 0,

that we can rewrite as

2

n
〈f

θ̂
− f ,f

θ̂
− f θ〉+ 2λ〈ĝ − g, θ̂ − θ〉

≤ − 2λ〈g, θ̂ − θ〉+
2

n
〈ε,f

θ̂
− f θ〉

for any g ∈ ∂‖θ‖1. But, the monotonicity of the subdifferential entails
that 〈ĝ − g, θ̂ − θ〉 ≥ 0 and and easy computation gives (Al-Kachi)

2〈f
θ̂
− f ,f

θ̂
− f θ〉 = ‖f

θ̂
− f θ‖2 + ‖f

θ̂
− f‖2 − ‖f θ − f‖2

so that we end up with

1

n
‖f

θ̂
− f‖2 +

1

n
‖f

θ̂
− f θ‖2

≤ 1

n
‖f θ − f‖2 − 2λ〈g, θ̂ − θ〉+

2

n
〈ε,f

θ̂
− f θ〉.

for any g ∈ ∂‖θ‖1. Now, we need to use what the subdifferential of the
`1 norm is. Using (5.10), we can write g = sign(θ) + h for any h such
that where hJ = 0 and ‖h‖∞ ≤ 1. We have

|〈sign(θ), θ̂ − θ〉| = |〈sign(θ), (θ̂ − θ)J〉| ≤ ‖(θ̂ − θ)J‖1.

and we can choose h such that

〈h, θ̂ − θ〉 = 〈h, θ̂J{〉 = ‖θ̂J{‖1 = ‖(θ̂ − θ)J{‖1.

This leads to

1

n
‖f

θ̂
− f‖2 +

1

n
‖f

θ̂
− f θ‖2 + 2λ‖θ̂J{‖1

≤ 1

n
‖f θ − f‖2 + 2λ‖(θ̂ − θ)J‖1 +

2

n
〈ε,f

θ̂
− f θ〉.

If ‖f
θ̂
− f‖2 + ‖f

θ̂
− f θ‖2 − ‖f θ − f‖2 ≤ 0, then ‖f

θ̂
− f‖2 ≤

‖f θ − f‖2, which concludes the proof, so let us consider from now on
the other case, which entails that

2λ‖θ̂J{‖1 ≤ 2λ‖(θ̂ − θ)J‖1 +
2

n
〈ε,f

θ̂
− f θ〉. (5.19)
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6: see the proof of Theorem 5.3On the event A,6 we have 1
n‖X

> ε ‖∞ ≤ λ/2 where we recall that
λ = 2σ

√
2(x+ logM)/n. This entails

2

n
〈ε,f

θ̂
− f θ〉 =

2

n
〈X> ε, θ̂ − θ〉

=
2

n
〈X> ε, (θ̂ − θ)J〉+

2

n
〈X> ε, θ̂J{〉

≤ λ‖(θ̂ − θ)J‖1 + λ‖θ̂J{‖1,

which combined with (5.19) gives ‖θ̂J{‖1 ≤ 3‖(θ̂ − θ)J‖1 on A,
namely that θ̂ − θ ∈ Cθ,3 where we recall that Cθ,3 is given by (5.12).
This means that, on A, using (5.13), we can write in this case that

‖(θ̂ − θ)J‖ ≤
µ(θ)√
n
‖X(θ̂ − θ)‖

with µ(θ) = µ3(θ), which entails that

1

n
‖f

θ̂
− f‖2 +

1

n
‖f

θ̂
− f θ‖2 + λ‖θ̂J{‖1

≤ 1

n
‖f θ − f‖2 + 3λ‖(θ̂ − θ)J‖1

using Cauchy-Schwarz≤ 1

n
‖f θ − f‖2 + 3λ|J |1/2‖(θ̂ − θ)J‖

≤ 1

n
‖f θ − f‖2 + 3µ(θ)λ|J |1/2 1√

n
‖X(θ̂ − θ)‖

=
1

n
‖f θ − f‖2 + 3µ(θ)λ|J |1/2 1√

n
‖f

θ̂
− f θ‖,

which concludes the proof since using the fact that ax − x2 ≤ a2/4

for any x, a > 0, we have

1

n
‖f

θ̂
− f‖2 ≤ 1

n
‖f θ − f‖2 + 9µ(θ)2λ2|J |.

�



Maximum likelihood estimation,
application to exponential models 6

6.1 A theoretical motivation . 87
6.2 Exponential models . . . . 88
6.3 Maximum likelihood estima-
tion in an exponential model 92

Maximum likelihood estimation is a fundamental and very general
approach for statistical inference of model parameters. In this chapter,
we consider a statistical experiment with data X : Ω→ X and model
{Pθ : θ ∈ Θ} with Θ ⊂ Rd dominated by a σ-finite measure µ on X ,
so that we can define the family of densities

This uses the Radon-Nikodym theoremfθ(x) =
dPθ
dµ(x)

on X , see Definition 1.5 from Chapter 1.

Definition 6.1 The likelihood function L : Θ→ R+ is defined as

L(θ) := L(θ;X) = fθ(X).

We also introduce the log-likelihood ` : Θ→ R given by

`(θ) := `(θ;X) := log fθ(X)

whenever fθ(X) > 0 almost surely for all θ ∈ Θ.

The likelihood and log-likelihood are random functions since they
depend on the data X .

Maximum likelihood estimation. We want to infer θ, namely we
want to find θ0 ∈ Θ such that X ∼ Pθ0 . Given the data X , the
likelihood L(θ;X) is the “probability” to observe X whenever the
parameter is θ. So, in order to find θ0, it is natural to look for θ that
maximizes θ 7→ L(θ) (or equivalently θ 7→ `(θ)) on Θ, since such a θ
would maximize the probability of observing X (since we do observe
it). This simple principle is fundamental and motivates the following
definition.

Definition 6.2 (Maximum Likelihood Estimator) We say that θ̂ ∈ Θ

is a maximum likelihood estimator (MLE) if

L(θ̂;X) = sup
θ∈Θ

L(θ;X),

or equivalently that

θ̂ ∈ argmax
θ∈Θ

L(θ;X).
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Whenever it exists, a MLE θ̂ depends on X and on the choice of the
model {fθ : θ ∈ Θ}. If X = (X1, . . . , Xn) with Xi iid and density fθ
then

Ln(θ) = L(θ;X) = L(θ;X1, . . . , Xn) =
n∏
i=1

fθ(Xi)

and

`n(θ) = `(θ;X) = `(θ;X1, . . . , Xn) =
n∑
i=1

log fθ(Xi).

In this case we say that L and ` are the likelihood and log-likelihood
functions of the n-sampled experiment. The existence and uniqueness
of the maximum likelihood estimator is not granted in general (even
on non-pathological examples). In the next Chapter, we will see an

example where the maximum likeli-
hood estimator of logistic regression (a
widely used model for classification)
does not exist when data is linearly sep-
arable

6.1 A theoretical motivation

Let X1, . . . , Xn be iid with distribution Pθ0 = fθ0 · µ. Assuming
Eθ0 | log fθ(X1)| < +∞ for any θ ∈ Θ, we have that

1

n
`n(θ0)− 1

n
`n(θ) =

1

n

n∑
i=1

(
log fθ0(Xi)− log fθ(Xi)

)
This convergence holds in Pθ0 -
probability using the law of large
numbers

P→ Eθ0
[

log fθ0(X1)− log fθ(X1)
]

= h(Pθ0 , Pθ),

(6.1)

where we introduce the quantity

h(Pθ0 , Pθ) =

∫
X

log
(fθ0(x)

fθ(x)

)
fθ0(x)µ(dx)

which is called the relative entropy between Pθ0 and Pθ. This is a
fundamental quantity which deserves a definition.

Definition 6.3 Let P and Q be two probability measures on a mea-
surable space (Ω,A). The quantity given by

h(P,Q) = EP
[

log
(dP
dQ

)]
=

∫
log
(dP
dQ

(ω)
)
P (dω)

when P � Q and h(P,Q) = +∞ otherwise is called the relative
entropy between P and Q. It is also called the Kullback-Liebler
divergence or the information divergence.

Let us give some properties about h(P,Q). First of all, if P � Q

then
h(P,Q) = EP

[
log

dP

dQ

]
= EQ

[dP
dQ

log
dP

dQ

]
.



6 Maximum likelihood estimation, application to exponential models 88

It is always well-defined, eventually it is +∞ since x log ≥ −e−1 for
any x ∈ (0,+∞). Also, if P � Q then

using Jensen’s inequalityh(P,Q) = EQ
[dP
dQ

log
dP

dQ

]
≥ EQ

[dP
dQ

]
logEQ

[dP
dQ

]
= 0,

and note also that h(P,Q) = 0 ⇔ P = Q since φ(x) = x log x is
strictly convex.

Using (6.1), we have that (`n(θ0)− `n(θ))/n ≈ h(Pθ0 , Pθ) for n large
and as explained above h(Pθ0 , Pθ) = 0 iff Pθ0 = Pθ, namely iff θ = θ0

whenever the model is identifiable (see Definition 1.4 from Chapter 1).
This motivates the use of the maximum likelihood estimator, since
maximizing `n(θ) means minimizing (`n(θ0) − `n(θ))/n, that we
expect to be minimal at θ ≈ θ0 when the model is identifiable.

The MLE is a very general principle that can be used for virtually any
statistical model. Its theoretical study requires smoothness assumptions
on the family of densities fθ regarded as functions of the parameter θ.
In this Chapter, we study the MLE in the specific family of exponential
models for two reasons: exponential models contain most parametric
models that are of interest in practice, and their study is interesting by
itself, since they are the basis of generalized linear models that we will
study in the next Chapter. We will see that when {fθ : θ ∈ Θ} is an
exponential model, the MLE is easy to study, since it corresponds to an-
other estimation approach called method of moments. But, keep in mind
that MLE goes way beyond the setting considered here.

Example 6.1 Let us consider X ∼ Gamma(a, λ), namely the like-
lihood function

L(a, λ) =
λa

Γ(a)
xa−1e−λx = exp(θ>T (x)− logZ(θ))

with θ = [a − 1 λ]>, T (x) = [log x − x]> and Z(θ) = Γ(a)/λa.
This is an example of a so-called exponential model. Most paramet-
ric distributions can be written in this way (Poisson, Exponential,
Binomial, Gaussian, etc.), using if necessary a reparametrization (we
defined θ = [a− 1 λ]> in this example).

6.2 Exponential models

Let us first describe the so-called canonical exponotial model.

Definition 6.4 (Canonical exponential model) Let µ be a σ-finite
measure on a measurable space X and let T : X → Rd be a measur-
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able function. We define

Θdom =
{
θ ∈ Rd : Z(θ) :=

∫
X
eθ
>T (x)µ(dx) < +∞

}
and Θ = int(Θdom), the interior of Θdom. We introduce the density

fθ(x) = exp
(
θ>T (x)− logZ(θ)

)
with respect to µ for θ ∈ Θ and define Pθ = fθ · µ. The family
{Pθ : θ ∈ Θ} is called a canonical exponential model and the
function θ 7→ Z(θ) is called the partition function of the model.

We discussed sufficient statistics in Sec-
tion 1.3 of Chapter 1

Also, we call T the sufficient statistic of the model.

We consider {Pθ ∈ Θ} instead of {Pθ ∈ Θdom} since we will per-
form differential calculus and use the inversion theorem on this open
domain.

Proposition 6.1 The set Θdom is convex (if it is not empty) and the
function Θdom → R defined by Θ 7→ logZ(θ) is convex.

Proof. Note that if θ1, θ2 ∈ Θdom and α ∈ [0, 1] we have

Z(αθ1 + (1− α)θ2) =

∫
X

(
eθ
>
1 T (x)

)α(
eθ
>
2 T (x)

)1−α
µ(dx)

Using Hölder’s inequality≤
(∫
X
eθ
>
1 T (x)µ(dx)

)α
×
(∫
X
eθ
>
2 T (x)µ(dx)

)1−α
< +∞

which proves that αθ1 + (1 − α)θ2 ∈ Θdom and also that logZ is
convex since we have

logZ(αθ1 + (1− α)θ2) ≤ α logZ(θ1) + (1− α) logZ(θ2).

Definition 6.5 (Canonical and minimal exponential model) We say
that a canonical exponential model is minimal if T (x) does not
belong, Pθ-almost surely for all θ ∈ Θ, to any hyperplane H ⊂ Rd,
namely if

Pθ[{x ∈ X : T (x) ∈ H}] < 1

for any hyperplane H and any θ ∈ Θ.

Proposition 6.2 If a canonical exponential model is minimal, then it
is identifiable.

Proof. Let us consider θ1, θ2 ∈ Θ such that θ1 6= θ2 and such that
Pθ1 = Pθ2 . This entails fθ1(x) = fθ2(x) for any x ∈ X and in
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particular that

(θ1 − θ2)>T (X)− log(Z(θ1)/Z(θ2)) = 0

Pθ-almost surely for any θ ∈ Θ, which contradicts the fact that the
model is minimal according to Definition 6.5 with the hyperplane
H = {x ∈ X : (θ1 − θ2)>T (x) = log(Z(θ1)/Z(θ2))}.

From now on, we suppose that the model is minimal. It is a natural
assumption: it means that the coordinates of the sufficient statistic
T (X) are not almost-surely linearly redundant. Let us recall also that
Θ = int(Θdom) 6= ∅.

Theorem 6.3 Consider a canonical exponential model. Its partition
function θ 7→ logZ(θ) is C∞ on Θ and we have

Eθ[|Tj(X)|k] < +∞

for any j = 1, . . . , d, any k ∈ N (all the moments of T (X) with
X ∼ Pθ are finite) and any θ ∈ Θ. Furthermore, the following
relations

∇F (θ) is the gradient of F at θ while
∇2F (θ) is the Hessian matrix of F at θ

∇ logZ(θ) = Eθ[T (X)] and ∇2 logZ(θ) = Vθ[T (X)]

hold for any θ ∈ Θ.

The proof of Theorem 6.3 is left as an exercise, where we just need to
use dominated convergence to inverse differentiation and expectation.
Let us just do the following computation, which explains why the first
moment of the sufficient statistic is equal to the gradient of the partition
function:

We use the notation X ∼ µ to indicate
that we integrate with respect to µ even
if µ is not a probability measure

∇ logZ(θ) = ∇ logEX∼µ
[

exp(θ>T (X))
]

=
EX∼µ

[
T (X) exp(θ>T (X))

]
EX∼µ

[
exp(θ>T (X))

]
= Eθ[T (X)],

where we just used the definition of Pθ in the last equality.

Corollary 6.4 We have∇2 logZ(θ) � 0 for all θ ∈ Θ iff the model
is minimal.

Proof. For any u ∈ Rd and θ ∈ Θ we have u>∇2 logZ(θ)u =

u>Vθ[T (X)]u = Vθ[u>T (X)] so that ∇2 logZ(θ) is not positive
definite iff u>T (X) is constant Pθ almost-surely.

Note that we recover here the fact that θ 7→ logZ(θ) is strictly convex
when the model is minimal, since ∇2 logZ(θ) � 0 for any θ ∈ Θ.
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A consequence of this is that the differential of S(θ) = ∇ logZ(θ),
which is the Hessian matrix∇2 logZ(θ), is invertible for any θ ∈ Θ.

The following computation is insightful:

h(Pθ, Pθ′) = Eθ
[

log
dPθ
dPθ′

(X)
]

= Eθ
[
(θ − θ′)>T (X)− log

Z(θ)

Z(θ′)

]
= logZ(θ′)− logZ(θ)− (θ′ − θ)>∇ logZ(θ)

which means that h(Pθ, Pθ′) is equivalent to a local “linearization” of
logZ(θ) and therefore approximately equal to

h(Pθ, Pθ′) ≈
1

2
(θ′ − θ)>∇2 logZ(θ)(θ′ − θ)

for θ ≈ θ′. This makes a connection between the local curvature
of the model θ and its identifiability. Another proposition goes as
follows.

Proposition 6.5 The function θ 7→ logZ(θ) is injective on Θ if and
only if the model is identifiable.

Proof. We have that

h(Pθ, Pθ′) + h(Pθ′ , Pθ) = 〈∇ logZ(θ)−∇ logZ(θ′), θ − θ′〉

which is ≥ 0 by convexity. If logZ(θ′) = logZ(θ) and θ 6= θ′ then
h(Pθ, Pθ′) = h(Pθ′ , Pθ) = 0 so that Pθ = Pθ′ . Now, if Pθ = Pθ′ for
θ 6= θ′, we have Eθ[T (X)] = Eθ′ [T (X)] and therefore logZ(θ′) =

logZ(θ) using Theorem 6.3.

We proved the following properties about the function S : Θ → Rd

given by S(θ) = ∇ logZ(θ):

1. Whenever the model is identifiable, we know that S is injective
on Θ using Proposition 6.5;

2. We know that S is C∞ on Θ using Theorem 6.3;
3. The differential of S is invertible on Θ if the model is minimal

using Corollary 6.4.

We can therefore apply the theorem of global inversion to say that S is
a diffeomorphism, that S(Θ) is open and that its inverse S−1 is also
C∞. We therefore proved the following theorem.

Theorem 6.6 In a minimal and canonical exponential model, we
have that S : Θ → S(Θ) given by S(θ) = ∇ logZ(θ) is a diffeo-
morphism, that S(Θ) is open and that S−1 is also C∞.
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6.3 Maximum likelihood estimation in an
exponential model

Let us consider a iid sample X1, . . . , Xn with distribution Pθ = fθ · µ
from a canonical and minimal exponential model. The log-likelihood
writes

1

n
`n(θ) = θ>Tn − logZ(θ) (6.2)

where we introduced Tn = n−1
∑n

i=1 T (Xi).

Proposition 6.7 In a canonical and minimal exponential model, the
log-likelihood is strictly concave. This entails that if the MLE θ̂n =

argmaxθ∈Θ `n(θ) exists, it is given by

θ̂n = S−1(Tn),

where we recall that S(θ) = ∇ logZ(θ).

Proof. This is obvious since θ 7→ θ>Tn is linear, hence concave, and
since θ 7→ logZ(θ) is strictly concave using Theorem 6.3. Hence, any
maximizer of `n must satisfy the first order condition ∇`n(θ) = 0

which means that S(θ) = ∇ logZ(θ) = Tn. However, we know using
Theorem 6.6 that if it exists, the only solution is θ̂n = S−1(Tn).

Proposition 6.7 proves that, when it exists, the MLE corresponds to the
so-called method of moments estimator.

Example 6.2 Consider a iid sampleX1, . . . , Xn with Gamma(a, λ)

distribution and recall that its density can be written as

fa,λ(x) =
λa

Γ(a)
xa−1e−λx = exp(θ>T (x)− logZ(θ))

for x ≥ 0, where θ = [a − 1 λ]>, T (x) = [log x − x]> and
Z(θ) = Γ(a)/λa. We have

∇ logZ(θ) =

[
Γ′(a)
Γ(a) − log λ

−a/λ

]

so that finding a closed-form estimator means finding a solution to

Γ′(a)

Γ(a)
− log λ =

1

n

n∑
i=1

logXi

a

λ
=

1

n

n∑
i=1

Xi.

Such a solution is not explicit, but can be easily approximated using
a convex optimization algorithm.
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In summary, what we learned so far about the MLE in a minimal and
canonical exponential model is the following:

I When the MLE exists, we can express it as θ̂n = S−1(Tn),
although in general we cannot inverse explicitly S, as observed
in the previous example;

I When the MLE exists, we can compute it approximately using a
convex optimization algorithm, since the log-likelihood `n(θ) is
strictly concave and smooth.

Note that the MLE does not always exist, as shown in the next simple
example.

Remark 6.1 Consider X1, . . . , Xn iid with geometric distribution,
namely a density fp(x) = (1− p)x−1p with respect to the counting
measure, for x ∈ N \ {0} and p ∈ (0, 1). We can write it as an
exponential model since

fp(x) = exp
(
(x− 1) log(1− p) + log p

)
,

so that the sufficient statistic is T (x) = 1 − x and the canonical
parameter is θ = − log(1 − p) namely p = 1 − e−θ, so that in
canonical form, this exponential model writes

fθ(x) = exp
(
(1− x)θ + log(1− e−θ)

)
,

and the log-likelihood is given by

`n(θ) =
(
n−

n∑
i=1

Xi

)
θ + n log(1− e−θ).

On the event E = {X1 = · · · = Xn = 1} which has a probability
Pθ[E] = (1 − e−θ)n > 0 (although going towards zero quickly),
the MLE does not exist since on E we have `n(θ) = n log(1− e−θ)
which is concave and strictly increasing.

Definition 6.6 (Score and Fisher information) In a minimal and
canonical exponential model, the function θ 7→ ∇`n(θ) is called the
score function and the matrix

In(θ) = Vθ[∇`n(θ)],

which is the covariance matrix of the score, is called the Fisher
information.

This definition goes way beyond the particular case of the exponential
models considered here. Let us give some properties of the score and
the Fisher information. First of all, let us remark that the score is a
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1: Thanks to Theorem 6.6

centered random vector, since

Using Theorem 6.3Eθ[∇`n(θ)] = n(Eθ[T (X1)]−∇ logZ(θ)) = 0

and let us note that the Fisher information satisfies

Using (6.2) and the definition of Fisher
information with n = 1

In(θ) = Vθ[∇`n(θ)] = n Vθ[T (X1)] = nI1(θ)

and also that it satisfies

Using Theorem 6.3In(θ) = n Vθ[T (X1)] = n∇2 logZ(θ).

Note that since T (X1), . . . , T (Xn) are iid and such that Eθ[T (X1)] =

∇ logZ(θ) = S(θ) and Vθ[T (X1)] = I1(θ), we can use the multivari-
ate central limit theorem to obtain

This a convergence in Pθ distribution
√
n(Tn − S(θ)) Normal

(
0, I1(θ)

)
,

but since θ̂n = S−1(Tn), we want to use the multivariate ∆-method
(the scalar case was covered in Theorem 2.3 from Chapter 2) with
ϕ(t) = S−1(t). The multivariate ∆-method is given by the following
theorem.

Theorem 6.8 (Multivariate ∆-method) Let (an)n≥1 be a sequence
of positive number such that an → +∞, (Xn)n≥1 be a sequence
of random vectors Xn ∈ Rd and ϕ be measurable function. If
an(Xn − x)  X for some x ∈ Rd and some random vector X ,
and if ϕ is differentiable at x, we have

an(ϕ(Xn)− ϕ(x)) Jϕ(x)X,

where Jϕ(x) is the Jacobian matrix of f at x.

The proof of Theorem 6.8 is omitted since it follows the exact same
proof as that of Theorem 2.3. We apply1 Theorem 6.8 with ϕ = S−1,
so that Jϕ(S(θ)) = (∇2 logZ(θ))−1 = I1(θ)−1 and we end up with

This a convergence in Pθ-distribution
√
n(θ̂n − θ) Normal

(
0, I1(θ)−1

)
since V[I1(θ)−1Z] = I1(θ)−1V[Z]I1(θ)−1 = I1(θ)−1 whenever Z ∼
Normal(0, I1(θ)). This proves the following theorem.

Theorem 6.9 (Central limit theorem for the MLE) In a statistical
experiment where the model is a minimal and canonical exponential
model and where the MLE θ̂n exists, we have

√
n(θ̂n − θ) Normal

(
0, I1(θ)−1

)
,

which is a convergence in Pθ-distribution, where I1(θ) is the Fisher
information matrix given in Definition 6.6.
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2: An estimator θ̃n is asymptotically
normal if it satisfies

√
n(θ̃n − θ)  

Normal(0,V ) for all θ ∈ Θ with a
non-degenerate matrix V .

This theorem proves that the MLE is asymptotically normal and that its
“asymptotic variance” is equal to the inverse of the Fisher information.
In this sense, the Fisher information quantifies the asymptotic perfor-
mance of the MLE. Moreover, we can prove that the inverse of the
Fisher information matrix is the smallest achievable asymptotic vari-
ance among all asymptotically normal estimators2 and that the MLE
is efficient, since it is asymptotically normal with minimal asymptotic
variance (given by the inverse Fisher information matrix).

However, we won’t go further in this direction, since such results
are somewhat “stylized”: they hold only for an arbitrarily large n
and only for well-specified models. Indeed, such asymptotic results
hold only when the model is well-specified, namely whenever the true
distribution PX of the data actually belongs to the model, namely
PX = Pθ? for some θ? ∈ Θ. If the model is miss-specified, namely
PX /∈ {Pθ : θ ∈ Θ}, then the MLE quickly deteriorates.
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