Introduction to machine learning

Masters M2MO & MIDS

Stéphane Gaïffas

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Who I am ?

- Pr. Stéphane Gaïffas
- LPSM, Université de Paris
- DMA, Ecole normale supérieure
- https://stephanegaiffas.github.io/
- stephane.gaiffas@math.univ-paris-diderot.fr

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Teasers: data science or statistics?

"A data scientist is a statistician who lives in San Fransisco" #monkigras pic.twitter.com/HypLL3Cnye 12:13 PM - 30 Jan 2014

♠ €₽ 1,475 ♥ 841

Data Science is statistics on a Mac. 3:32 PM - 27 Aug 2013

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Follow

Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician.

6:55 PM - 3 May 2012

♠ 1,360 ♥ 821

Teasers: an application in marketing

chiefmartec.com Marketing Technology Landscape January 2014 MARKETING EXPERIENCES MARKETING OPERATIONS wizehive SnapApp cal ALE Extent affernon BECKON]c Survs Strutte KANA . . MEDALLIA - ijento NORTH Lagga structe > telligent ou inteast Unre forunbes ensilon) IGHT EDGE altruik Cuclemer Dates Wordtracker RAVEN Confishes) uthorityLaburShi Channel twitte house in Dundas chart ilty & Gamificati Logi UpCitu sweetson TG ky all you REARINGLEFTRON Linicher MO northplains Allocadia TruckMound PION Coosle CUC ConceptShare 🔾 moxie KISSmetrics Crozyegg RapLeef kannel + Cira areas 0 MANSPERT PREDICTA M pete Chartbeat monetate OMPENDUM hectoMYBUYS Theichrelevance COMPERATION COMPERATION Force' nleav spring 🖵 APPTUS SALTHRU monteman mousefice PAPERSHARE der Adgist bitly Ciddesty Um MOSAIC ADAM NOSCREEN DEUSCA Inch I leiEyeZ nal OpenX 📥 F Onalytica Cotimizely APT Adobe Unbounceokmio Londer 1 Page Va Acte OOVALA vimeo xertevent JivoxBrightRoll (20127 SYNFERENCE. BITAM SSAS WISTIAQ onescreen gromp Spothic Wertster Avenue TARGIT convert Alexan. With Dire Me of Kal LENOS SAMO and a Couchai contate gotimove @LOTAME"PARIO UVTIC GIGXA jonroin snaple infer AGIL U(1) Case Fabric Krux ake RedPoint Kenitre core adience Colastic in Mi2 OPENTEXT B **Annde** Co ba cleverbridge EPISERVER (O spree Greenkepe GX Linelight Soured Life HEOX25 Care SCALR - Tradware Coogle C Google Merosett A ale Linked in (territika yel) il net Artazon MicrosofiBitta PARES weige Wyesse nede Butter anazancon ade a source entresource

by Scott Brinker @chiefmartec http://chiefmartec.com

- A customer visits a webpage with his browser: a complex process of content selection and delivery begins.
- An advertiser might want to display an ad on the webpage where the user is going. The webpage belongs to a publisher.
- The publisher sells ad space to advertisers who want to reach customers

In some cases, an auction starts: **RTB** (Real Time Bidding)

Teasers: an application in marketing (Real Time Bidding)

- Advertisers have **10ms** (!) to give a price: they need to assess quickly how willing they are to display the ad to this customer
- Machine learning is used here to **predict the probability of click on the ad**. Time constraint: few model parameters to answer quickly
- Feature selection / dimension reduction is crucial here

Full process takes < 100ms

Teasers: an application in marketing (Real Time Bidding)

Some figures:

- 10 million prediction of click probability per second
- answers within 10ms
- stores 20Terabytes of data daily

Aim

• Based on past data, you want to find users that will click on some ads

This problem can be formulated as a **binary classification problem**

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

Classification = supervised learning with a binary label

Setting

- You have past/historical data, containing data about individuals *i* = 1, ..., *n*
- You have a **features** vector $x_i \in \mathbb{R}^d$ for each individual *i*
- For each *i*, you know if he/she clicked $(y_i = 1)$ or not $(y_i = -1)$
- We call $y_i \in \{-1,1\}$ the **label** of i
- (x_i, y_i) are i.i.d realizations of (X, Y)

Aim

- Given a features vector x (with no corresponding label), predict a label $\hat{y} \in \{-1,1\}$
- Use data $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$ to construct a classifier

Many ways to separate points!

Nearest Neighbors

Linear SVM

Linear SVM

Linear SVM

RBF SVM

RBF SVM

RBF SVM

.90

Random Forest

Random Forest

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Today: model-based classification

- Naive Bayes
- Linear discriminant analysis (LDA)
- Quadratic discriminant analysis (QDA)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Logistic regression
- Penalization
- Cross-validation

Probabilistic / statistical approach

- Model the distribution of Y|X
- Construct estimators $\hat{p}_1(x)$ and $\hat{p}_{-1}(x)$ of

$$p_1(x) = \mathbb{P}(Y = 1 | X = x)$$
 and $p_{-1}(x) = 1 - p_1(x)$

• Given x, classify using

$$\hat{y} = \begin{cases} 1 & \text{if } \hat{p}_1(x) \ge t \\ -1 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

for some threshold $t \in (0, 1)$

Bayes formula. We know that

$$p_y(x) = \mathbb{P}(Y = y | X = x) = \frac{\mathbb{P}(X = x | Y = y)\mathbb{P}(Y = y)}{\mathbb{P}(X = x)}$$
$$= \frac{\mathbb{P}(X = x | Y = y)\mathbb{P}(Y = y)}{\sum_{y' = -1,1} \mathbb{P}(X = x | Y = y')\mathbb{P}(Y = y')}$$

If we know the distribution of X|Y and the distribution of Y, we know the distribution of Y|X

Bayes classifier. Classify using Bayes formula, given that:

- We model $\mathbb{P}(X|Y)$
- We are able to estimate $\mathbb{P}(X|Y)$ based on data

Maximum a posteriori. Classify using the discriminant functions

$$\delta_y(x) = \log \mathbb{P}(X = x | Y = y) + \log \mathbb{P}(Y = y)$$

for y = 1, -1 and decide (largest, beyond a threshold, etc.)

Remark.

- Different models on the distribution of X|Y leads to different classifiers
- The simplest one is the Naive Bayes
- Then, the most standard are Linear Discriminant Analysis (LDA) and Quadratic discriminant Analysis (QDA)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Naive Bayes. A crude modeling for $\mathbb{P}(X|Y)$: assume features X^j are independent conditionally on Y:

$$\mathbb{P}(X = x | Y = y) = \prod_{j=1}^{d} \mathbb{P}(X^j = x^j | Y = y)$$

Model the univariate distribution $X^{j}|Y$: for instance, assume that

$$\mathbb{P}(X^j|Y=y) = \mathsf{Normal}(\mu_{j,y}, \sigma_{j,y}^2),$$

parameters $\mu_{j,y}$ and $\sigma_{j,y}^2$ easily estimated by MLE

- If the feature X^j is discrete, use a Bernoulli or multinomial distribution
- Leads to a classifier which is very easy to compute
- Requires only the computation of some averages (MLE)

Discriminant Analysis. Assume that

$$\mathbb{P}(X|Y=y) = \text{Normal}(\mu_y, \Sigma_y),$$

where we recall that the density of Normal(μ , Σ) is given by

$$f(x) = \frac{1}{(2\pi)^{d/2}\sqrt{\det\Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right)$$

In this case, discriminant functions are

$$\begin{split} \delta_y(x) &= \log \mathbb{P}(X = x | Y = y) + \log \mathbb{P}(Y = y) \\ &= -\frac{1}{2} (x - \mu_y)^\top \Sigma_y^{-1} (x - \mu_y) - \frac{d}{2} \ln(2\pi) \\ &- \frac{1}{2} \log \det \Sigma_y + \log \mathbb{P}(Y = y) \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation. Use "natural" estimators, obtained by maximum likelihood estimation. Define for $y \in \{-1, 1\}$

$$I_y = \{i = 1, \dots, n : y_i = y\}$$
 and $n_y = |I_y|$

MLE estimators are given by

$$\hat{\mathbb{P}}(Y = y) = rac{n_y}{n}, \quad \hat{\mu}_y = rac{1}{n_y} \sum_{i \in I_y} x_i,$$
 $\hat{\Sigma}_y = rac{1}{n_y} \sum_{i \in I_y} (x_i - \hat{\mu}_y) (x_i - \hat{\mu}_y)^ op$

for $y \in \{-1, 1\}$. These are simply the proportion, sample mean and sample covariance within each group of labels

Linear Discriminant Analysis (LDA)

- \bullet Assumes that $\Sigma = \Sigma_1 = \Sigma_{-1}$
- All groups have the same correlation structure
- In this case decision function is linear $\langle x, w \rangle \ge c$ with

$$\begin{split} w &= \Sigma^{-1}(\mu_1 - \mu_{-1}) \\ c &= \frac{1}{2}(\langle \mu_1, \Sigma^{-1}\mu_1 \rangle - \langle \mu_{-1}, \Sigma^{-1}\mu_{-1} \rangle) \\ &+ \log\Big(\frac{\mathbb{P}(Y = 1|X = x)}{\mathbb{P}(Y = -1|X = x)}\Big) \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

Quadratic Discriminant Analysis (QDA)

- Assumes that $\Sigma_1 \neq \Sigma_{-1}$
- Decision function is quadratic
- cf. Exercice 1 from exos1.pdf

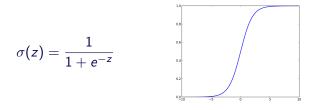
Logistic regression

- By far the most widely used classification algorithm
- We want to explain the label y based on x, we want to "regress" y on x
- Models the distribution of Y|X

For $y \in \{-1,1\}$, we consider the model

$$\mathbb{P}(Y=1|X=x) = \sigma(x^{\top}w + b)$$

where $w \in \mathbb{R}^d$ is a vector of model weights and $b \in \mathbb{R}$ is the intercept, and where σ is the sigmoid function



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

- The sigmoid choice really is a **choice**. It is a **modelling choice**.
- It's a way to map $\mathbb{R} o [0,1]$ (we want to model a probability)
- We could also consider

$$\mathbb{P}(Y=1|X=x)=F(\langle x,w\rangle+b)$$

for any distribution function F. Another popular choice is the Gaussian distribution

$$F(z) = \mathbb{P}(N(0,1) \leq z),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

which leads to another loss called probit

• However, the sigmoid choice has the following nice interpretation: an easy computation leads to

$$\log\left(\frac{\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=-1|X=x)}\right) = \langle x, w \rangle + b$$

This quantity is called the log-odd ratio

Note that

$$\mathbb{P}(Y=1|X=x) \geq \mathbb{P}(Y=-1|X=x)$$

iff

$$\langle x, w \rangle + b \geq 0.$$

- This is a linear classification rule
- Linear with respect to the considered features x
- But, you choose the features: features engineering (more on that later)

Estimation of w and b

- We have a model for Y|X
- Data (x_i, y_i) is assumed i.i.d with the same distribution as (X, Y)
- Compute estimators \hat{w} and \hat{b} by maximum likelihood estimation
- Or equivalently, minimize the minus log-likelihood
- More generally, when a model is used

Goodness-of-fit = $-\log$ likelihood

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• log is used mainly since averages are easier to study (and compute) than products

Likelihood is given by

$$\begin{split} &\prod_{i=1}^{n} \mathbb{P}(Y = y_i | X = x_i) \\ &= \prod_{i=1}^{n} \sigma(\langle x_i, w \rangle + b)^{\frac{1+y_i}{2}} (1 - \sigma(\langle x_i, w \rangle + b))^{\frac{1-y_i}{2}} \\ &= \prod_{i=1}^{n} \sigma(\langle x_i, w \rangle + b)^{\frac{1+y_i}{2}} \sigma(-\langle x_i, w \rangle - b)^{\frac{1-y_i}{2}} \end{split}$$

and the minus log-likelihood is given by

$$\sum_{i=1}^n \log(1+e^{-y_i(\langle x_i,w\rangle+b)})$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Compute \hat{w} and \hat{b} as follows:

$$(\hat{w}, \hat{b}) \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} rac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i(\langle x_i, w
angle + b)})$$

- It is a convex and smooth problem
- Many ways to find an approximate minimizer
- Convex optimization algorithms (more on that later)

If we introduce the logistic loss function

$$\ell(y,y') = \log(1 + e^{-yy'})$$

then

$$(\hat{w}, \hat{b}) \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A goodness-of-fit

$$(\hat{w}, \hat{b}) \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

is natural: it is an average of losses, one for each sample point

Note that

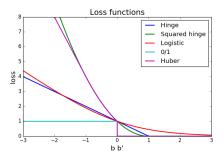
•
$$\ell(y, y') = \log(1 + e^{-yy'})$$
 for logistic regression

• $\ell(y, y') = \frac{1}{2}(y - y')^2$ for least-squares linear regression

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other classical loss functions for binary classication

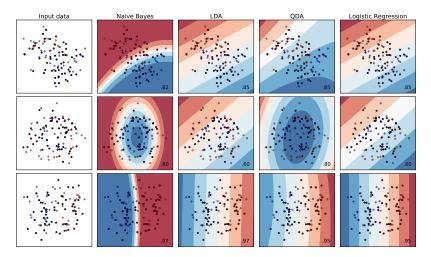
- Hinge loss (SVM), $\ell(y, y') = (1 yy')_+$
- Quadratic hinge loss (SVM), $\ell(y, y') = \frac{1}{2}(1 yy')_+^2$
- Huber loss $\ell(y, y') = -4yy'\mathbf{1}_{yy'<-1} + (1 yy')^2_+\mathbf{1}_{yy'\geq -1}$



 These losses can be understood as a convex approximation of the 0/1 loss ℓ(y, y') = 1_{yy'≤0}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

A comparison of classifiers on toy datasets



[the jupyter notebook for this figure will be on the webpage]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Standard error metrics in classification

• Precision, Recall, F-Score, AUC

For each sample *i* we have

- an actual label y_i
- a predicted label \hat{y}_i

We can construct the confusion matrix

		Yes	No	_
Class	Yes	TP	FN	with
Actual	No	FP	TN	_

Predicted Class

$$\begin{array}{l} \mathsf{TP} = \sum_{i=1}^{n} \mathbf{1}_{y_{i}=1, \hat{y}_{i}=1} \\ \mathsf{TN} = \sum_{i=1}^{n} \mathbf{1}_{y_{i}=-1, \hat{y}_{i}=-1} \\ \mathsf{FN} = \sum_{i=1}^{n} \mathbf{1}_{y_{i}=1, \hat{y}_{i}=-1} \\ \mathsf{FP} = \sum_{i=1}^{n} \mathbf{1}_{y_{i}=-1, \hat{y}_{i}=1} \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

with yes = 1 and no = -1

Standard error metrics in classification

$$Precision = \frac{TP}{\#(predicted P)} = \frac{TP}{TP + FP}$$
$$Recall = \frac{TP}{\#(real P)} = \frac{TP}{TP + FN}$$
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$F-Score = 2\frac{Precision \times Recall}{Precision + Recall}$$

Some vocabulary

- Recall = Sensitivity
- False-Discovery Rate FDR = 1 Precision

ROC Curve (Receiver Operating Characteristic)

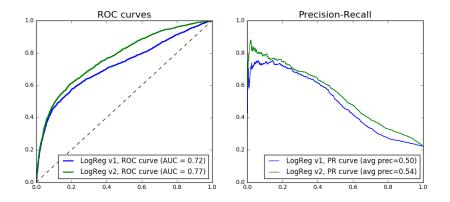
- Based on the estimated probabilities $\hat{p}_{i,1} = \hat{\mathbb{P}}(Y = 1 | X = x_i)$
- Each point At of the curve has coordinates (FPRt, TPRt), where FPRt and TPRt are FPR and TPR of the confusion matrix obtained by the classification rule

$$\hat{y}_i = egin{cases} 1 & ext{if } \hat{p}_{i,1} \geq t \ -1 & ext{otherwise} \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for a threshold t varying in [0, 1]

AUC score is the Area Under the ROC Curve



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Penalization to avoid overfitting Computing

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

generally leads to a bad classifier. Minimize instead

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \left\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \right\}$$

where

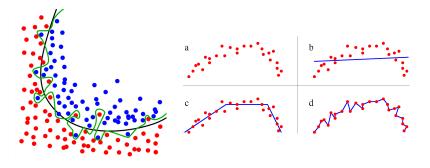
- pen is a **penalization** function, it forbids *w* to be "too complex"
- *C* > 0 is a **tuning** or **smoothing** parameter, that **balances** goodness-of-fit and penalization

Penalization to avoid overfitting

In the problem

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \Big\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \Big\},$$

a well-chosen C > 0, allows to avoid **overfitting**



Overfitting is what you want to avoid

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Which penalization? The ridge penalization considers

$$\mathsf{pen}(w) = rac{1}{2} \|w\|_2^2 = rac{1}{2} \sum_{j=1}^d w_j^2$$

It penalizes the "size" of w

In the case of the SVM (hinge loss) it has a nice interpretation: **corresponds to the margin** (more on that later)

This is the most widely used penalization

- It's nice and easy
- It allows to "deal" with correlated features (more on that later)
- It actually helps training! With a ridge penalization, the optimization problem is easier (more on that later)

There is another desirable property on \hat{w}

If $\hat{w}_j = 0$, then feature j has no impact on the prediction:

$$\hat{y} = \operatorname{sign}(\langle x, \hat{w} \rangle + \hat{b})$$

If we have many features (d is large), it would be nice if \hat{w} contained **zeros**, and many of them

- Means that only few features are statistically relevant.
- Means that only **few** features are useful to predict the label Leads to a simpler model, with a "reduced" dimension

How to do it ?

Tempting to use

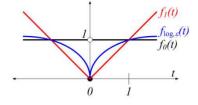
$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \Big\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \|w\|_0 \Big\},$$

where

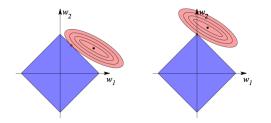
$$\|w\|_0 = \#\{j \in \{1, \ldots, d\} : w_j \neq 0\}.$$

To solve this, explore **all** possible supports of w. Too long! (NP-hard)

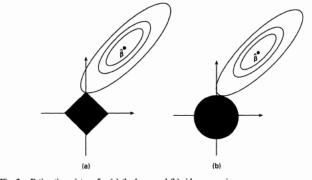
Find a convex proxy of $\|\cdot\|_0$: the ℓ_1 -norm $\|w\|_1 = \sum_{j=1}^d |w_j|$



Why does it induce sparsity?



Why ℓ_2 (ridge) does not induce sparsity?



▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

A direct computation

Consider the minimization problem

$$\min_{z'\in\mathbb{R}}\frac{1}{2}(z'-z)^2+\lambda|z'|$$

for $\lambda > 0$ and $z \in \mathbb{R}$

- Derivative at 0_+ : $d_+ = \lambda z$
- Derivative at 0_: $d_{-} = -\lambda z$

Let z_* be the solution

• $z_* = 0$ iff $d_+ \ge 0$ and $d_- \le 0$, namely $|z| \le \lambda$

• $z_* \geq 0$ iff $d_+ \leq 0$, namely $z \geq \lambda$ and $z_* = z - \lambda$

• $z_* \leq 0$ iff $d_- \geq 0$, namely $z \leq -\lambda$ and $z_* = z + \lambda$ Hence

$$z_* = \operatorname{sign}(z)(|z| - \lambda)_+.$$

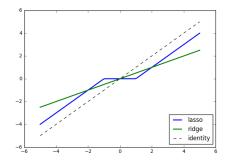
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\operatorname*{argmin}_{z' \in \mathbb{R}} \frac{1}{2} (z'-z)^2 + \frac{1}{C} |z'| = \operatorname{sign}(z) \Big(|z| - \frac{1}{C} \Big)_+$$

so that

$$\underset{w'\in\mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|w'-w\|_2^2 + \frac{1}{C} \|w'\|_1 = \operatorname{sign}(w) \odot \left(|w| - \frac{1}{C}\right)_+.$$

Example with C = 1



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Particular instances of problem

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \Big\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \Big\},$$

For $\ell(y, y') = \frac{1}{2}(y - y')^2$ and pen $(w) = \frac{1}{2}||w||_2^2$, the problem is called **ridge regression**

For $\ell(y, y') = \frac{1}{2}(y - y')^2$ and pen $(w) = ||w||_1$, the problem is called **Lasso** (Least absolute shrinkage and selection operator)

For $\ell(y, y') = \log(1 + e^{-yu'})$ and $pen(w) = ||w||_1$, the problem is called ℓ_1 -penalized logistic regression

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Many combinations possible...

The combinations

(linear regression or logistic) + (ridge or $\ell_1)$ are the most wildely used

Another penalization is

$$pen(w) = \frac{1}{2} \|w\|_2^2 + \alpha \|w\|_1$$

called **elastic-net**, benefits from both the advantages of ridge and ℓ_1 penalization (where $\alpha \ge 0$ balances the two)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

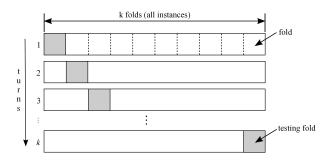
Cross-validation

- Generalization is the goal of supervised learning
- A trained classifier has to be **generalizable**. It must be able to work on other data than the training dataset
- Generalizable means "works without overfitting"
- This can be achieved using cross-validation
- There is **no machine learning without cross-validation** at some point!
- In the case of penalization, we need to choose a penalization parameter *C* that generalizes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

V-Fold cross-validation

- Most standard cross-validation technique
- Take V = 5 or V = 10. Pick a random partition I_1, \ldots, I_V of $\{1, \ldots, n\}$, where $|I_v| \approx \frac{n}{V}$ for any $v = 1, \ldots, V$



▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Consider a set

$$\mathcal{C} = \{C_1, \ldots C_K\}$$

of possible values for C. For each $v = 1, \ldots, V$

- Put $I_{v,\texttt{train}} = \cup_{v' \neq v} I_{v'}$ and $I_{v,\texttt{test}} = I_v$
- For each $C \in C$, find

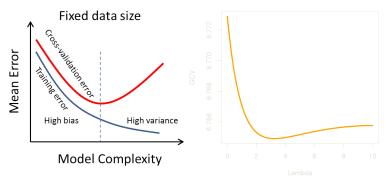
$$\hat{w}_{\nu,C} \in \operatorname*{argmin}_{w} \Big\{ \frac{1}{|I_{\nu,\mathtt{train}}|} \sum_{i \in I_{\nu,\mathtt{train}}} \ell(y_i, \langle x_i, w \rangle) + \frac{1}{C} \operatorname{pen}(w) \Big\}$$

Take

$$\hat{C} \in \underset{C \in \mathcal{C}}{\operatorname{argmin}} \sum_{v=1}^{V} \sum_{i \in I_{v, \text{test}}} \ell(y_i, \langle x_i, \hat{w}_{v,C} \rangle)$$

Remark: depending on the problem, we might use a different loss (or score) for choosing \hat{C}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ



• Training error:

• Testing, validation or cross-validation error:

$$C \mapsto \sum_{\nu=1}^{V} \sum_{i \in I_{\nu, \text{test}}} \ell(y_i, \langle x_i, \hat{w}_{\nu, C} \rangle)$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

590

Next week

• The linear SVM: the hinge loss

(ロ)、(型)、(E)、(E)、(E)、(D)へ()

- Kernels methods
- And some jokes too...

Thank you!

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>