
Introduction to machine learning

Masters M2MO & MIDS

Stéphane Gäıffas

Who I am ?

Pr. Stéphane Gäıffas

LPSM, Université de Paris

DMA, Ecole normale supérieure

https://stephanegaiffas.github.io/

stephane.gaiffas@math.univ-paris-diderot.fr

https://stephanegaiffas.github.io/
stephane.gaiffas@math.univ-paris-diderot.fr

Teasers: data science or statistics?

Teasers: an application in marketing

Marketing Technology Landscape January 2014

IN
FR
A
&'

ST
R
U
C
TU

R
E'

B
A
C
KB

O
N
E'

PL
A
TF
O
R
M
S'

M
ID
D
LE
&'

W
A
R
E'

Databases' Big'Data'

by'Sco?'Brinker'''@chiefmartec'''h?p://chiefmartec.com'

Cloud'

CRM' MarkeNng'AutomaNon'/'Integrated'MarkeNng' Web'Site'/'WCM'/'WEM' E&commerce'

User'Mgmt' Cloud'Connectors' APIs'

MARKETING'EXPERIENCES'

Channel/Local'Mktg'

MarkeNng'Resource'Mgmt'

MARKETING'OPERATIONS'

Agile'&'Project'Mgmt'

Dashboards'

MarkeNng'AnalyNcs'

Business'Intelligence'

Digital'Asset'Mgmt'

MarkeNng'Data'

Sales'Enablement'

Content'MarkeNng'PersonalizaNon'

TesNng'&'OpNmizaNon'

SEO'

MarkeNng'Apps'

Customer'Experience/VoC'

Calls'&'Call'Centers'

Events'&'Webinars'

Loyalty'&'GamificaNon'

Social'Media'MarkeNng'

CommuniNes'&'Reviews'

Video'Ads'&'MarkeNng'

Email'MarkeNng'

Display'AdverNsing'

Search'&'Social'Ads'

Tag'Management'

IN
TE
R
N
ET
'Web'Dev' MarkeNng'Environment'

Data'Management'PlaYorms/Customer'Data'PlaYorms'

Web'&'Mobile'AnalyNcs'

Mobile'App'Dev'

Mobile'MarkeNng'

CreaNve'&'Design'

Teasers: an application in marketing (Real Time Bidding)

A customer visits a webpage with his browser: a complex
process of content selection and delivery begins.

An advertiser might want to display an ad on the webpage
where the user is going. The webpage belongs to a publisher.

The publisher sells ad space to advertisers who want to reach
customers

In some cases, an auction starts: RTB (Real Time Bidding)

Teasers: an application in marketing (Real Time Bidding)

Advertisers have 10ms (!) to give a price: they need to
assess quickly how willing they are to display the ad to this
customer

Machine learning is used here to predict the probability of
click on the ad. Time constraint: few model parameters to
answer quickly

Feature selection / dimension reduction is crucial here

Full process takes < 100ms

Teasers: an application in marketing (Real Time Bidding)

Some figures:

10 million prediction of click probability per second

answers within 10ms

stores 20Terabytes of data daily

Aim

Based on past data, you want to find users that will click on
some ads

This problem can be formulated as a binary classification
problem

Classification = supervised learning with a binary label

Setting

You have past/historical data, containing data about
individuals i = 1, . . . , n

You have a features vector xi ∈ Rd for each individual i

For each i , you know if he/she clicked (yi = 1) or not
(yi = −1)

We call yi ∈ {−1, 1} the label of i

(xi , yi) are i.i.d realizations of (X ,Y)

Aim

Given a features vector x (with no corresponding label),
predict a label ŷ ∈ {−1, 1}
Use data D = {(x1, y1), . . . , (xn, yn)} to construct a classifier

Many ways to separate points!

Today: model-based classification

Naive Bayes

Linear discriminant analysis (LDA)

Quadratic discriminant analysis (QDA)

Logistic regression

Penalization

Cross-validation

Probabilistic / statistical approach

Model the distribution of Y |X
Construct estimators p̂1(x) and p̂−1(x) of

p1(x) = P(Y = 1|X = x) and p−1(x) = 1− p1(x)

Given x , classify using

ŷ =

{
1 if p̂1(x) ≥ t

−1 otherwise

for some threshold t ∈ (0, 1)

Bayes formula. We know that

py (x) = P(Y = y |X = x) =
P(X = x |Y = y)P(Y = y)

P(X = x)

=
P(X = x |Y = y)P(Y = y)∑

y ′=−1,1 P(X = x |Y = y ′)P(Y = y ′)

If we know the distribution of X |Y and the distribution of Y , we
know the distribution of Y |X

Bayes classifier. Classify using Bayes formula, given that:

We model P(X |Y)

We are able to estimate P(X |Y) based on data

Maximum a posteriori. Classify using the discriminant functions

δy (x) = logP(X = x |Y = y) + logP(Y = y)

for y = 1,−1 and decide (largest, beyond a threshold, etc.)

Remark.

Different models on the distribution of X |Y leads to different
classifiers

The simplest one is the Naive Bayes

Then, the most standard are Linear Discriminant Analysis
(LDA) and Quadratic discriminant Analysis (QDA)

Naive Bayes. A crude modeling for P(X |Y): assume features X j

are independent conditionally on Y :

P(X = x |Y = y) =
d∏

j=1

P(X j = x j |Y = y)

Model the univariate distribution X j |Y : for instance, assume that

P(X j |Y = y) = Normal(µj ,y , σ
2
j ,y),

parameters µj ,y and σ2j ,y easily estimated by MLE

If the feature X j is discrete, use a Bernoulli or multinomial
distribution

Leads to a classifier which is very easy to compute

Requires only the computation of some averages (MLE)

Discriminant Analysis. Assume that

P(X |Y = y) = Normal(µy ,Σy),

where we recall that the density of Normal(µ,Σ) is given by

f (x) =
1

(2π)d/2
√

det Σ
exp

(
− 1

2
(x − µ)>Σ−1(x − µ)

)
In this case, discriminant functions are

δy (x) = logP(X = x |Y = y) + logP(Y = y)

= −1

2
(x − µy)>Σ−1y (x − µy)− d

2
ln(2π)

− 1

2
log det Σy + logP(Y = y)

Estimation. Use “natural” estimators, obtained by maximum
likelihood estimation. Define for y ∈ {−1, 1}

Iy = {i = 1, . . . , n : yi = y} and ny = |Iy |

MLE estimators are given by

P̂(Y = y) =
ny
n
, µ̂y =

1

ny

∑
i∈Iy

xi ,

Σ̂y =
1

ny

∑
i∈Iy

(xi − µ̂y)(xi − µ̂y)>

for y ∈ {−1, 1}. These are simply the proportion, sample mean
and sample covariance within each group of labels

Linear Discriminant Analysis (LDA)

Assumes that Σ = Σ1 = Σ−1

All groups have the same correlation structure

In this case decision function is linear 〈x ,w〉 ≥ c with

w = Σ−1(µ1 − µ−1)

c =
1

2
(〈µ1,Σ−1µ1〉 − 〈µ−1,Σ−1µ−1〉)

+ log
(P(Y = 1|X = x)

P(Y = −1|X = x)

)
Quadratic Discriminant Analysis (QDA)

Assumes that Σ1 6= Σ−1

Decision function is quadratic

cf. Exercice 1 from exos1.pdf

Logistic regression

By far the most widely used classification algorithm

We want to explain the label y based on x , we want to
“regress” y on x

Models the distribution of Y |X
For y ∈ {−1, 1}, we consider the model

P(Y = 1|X = x) = σ(x>w + b)

where w ∈ Rd is a vector of model weights and b ∈ R is the
intercept, and where σ is the sigmoid function

σ(z) =
1

1 + e−z

The sigmoid choice really is a choice. It is a modelling
choice.

It’s a way to map R→ [0, 1] (we want to model a probability)

We could also consider

P(Y = 1|X = x) = F (〈x ,w〉+ b)

for any distribution function F . Another popular choice is the
Gaussian distribution

F (z) = P(N(0, 1) ≤ z),

which leads to another loss called probit

However, the sigmoid choice has the following nice
interpretation: an easy computation leads to

log
(P(Y = 1|X = x)

P(Y = −1|X = x)

)
= 〈x ,w〉+ b

This quantity is called the log-odd ratio

Note that

P(Y = 1|X = x) ≥ P(Y = −1|X = x)

iff
〈x ,w〉+ b ≥ 0.

This is a linear classification rule

Linear with respect to the considered features x

But, you choose the features: features engineering (more
on that later)

Estimation of w and b

We have a model for Y |X
Data (xi , yi) is assumed i.i.d with the same distribution as
(X ,Y)

Compute estimators ŵ and b̂ by maximum likelihood
estimation

Or equivalently, minimize the minus log-likelihood

More generally, when a model is used

Goodness-of-fit = −log likelihood

log is used mainly since averages are easier to study (and
compute) than products

Likelihood is given by

n∏
i=1

P(Y = yi |X = xi)

=
n∏

i=1

σ(〈xi ,w〉+ b)
1+yi
2
(
1− σ(〈xi ,w〉+ b)

) 1−yi
2

=
n∏

i=1

σ(〈xi ,w〉+ b)
1+yi
2 σ(−〈xi ,w〉 − b)

1−yi
2

and the minus log-likelihood is given by

n∑
i=1

log(1 + e−yi (〈xi ,w〉+b))

Compute ŵ and b̂ as follows:

(ŵ , b̂) ∈ argmin
w∈Rd ,b∈R

1

n

n∑
i=1

log(1 + e−yi (〈xi ,w〉+b))

It is a convex and smooth problem

Many ways to find an approximate minimizer

Convex optimization algorithms (more on that later)

If we introduce the logistic loss function

`(y , y ′) = log(1 + e−yy
′
)

then

(ŵ , b̂) ∈ argmin
w∈Rd ,b∈R

1

n

n∑
i=1

`(yi , 〈xi ,w〉+ b)

A goodness-of-fit

(ŵ , b̂) ∈ argmin
w∈Rd ,b∈R

1

n

n∑
i=1

`(yi , 〈xi ,w〉+ b)

is natural: it is an average of losses, one for each sample point

Note that

`(y , y ′) = log(1 + e−yy
′
) for logistic regression

`(y , y ′) = 1
2(y − y ′)2 for least-squares linear regression

Other classical loss functions for binary classication

Hinge loss (SVM), `(y , y ′) = (1− yy ′)+

Quadratic hinge loss (SVM), `(y , y ′) = 1
2(1− yy ′)2+

Huber loss `(y , y ′) = −4yy ′1yy ′<−1 + (1− yy ′)2+1yy ′≥−1

These losses can be understood as a convex approximation of
the 0/1 loss `(y , y ′) = 1yy ′≤0

A comparison of classifiers on toy datasets

Input data

.82

Naive Bayes

.85

LDA

.85

QDA

.85

Logistic Regression

.80 .60 .80 .60

.97 .97 .95 .95

[the jupyter notebook for this figure will be on the webpage]

Standard error metrics in classification

Precision, Recall, F-Score, AUC

For each sample i we have

an actual label yi

a predicted label ŷi

We can construct the confusion matrix

with

TP =
∑n

i=1 1yi=1,ŷi=1

TN =
∑n

i=1 1yi=−1,ŷi=−1
FN =

∑n
i=1 1yi=1,ŷi=−1

FP =
∑n

i=1 1yi=−1,ŷi=1

with yes = 1 and no = −1

Standard error metrics in classification

Precision =
TP

#(predicted P)
=

TP

TP + FP

Recall =
TP

#(real P)
=

TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F-Score = 2
Precision× Recall

Precision + Recall

Some vocabulary

Recall = Sensitivity

False-Discovery Rate FDR = 1− Precision

ROC Curve (Receiver Operating Characteristic)

Based on the estimated probabilities p̂i ,1 = P̂(Y = 1|X = xi)

Each point At of the curve has coordinates (FPRt ,TPRt),
where FPRt and TPRt are FPR and TPR of the confusion
matrix obtained by the classification rule

ŷi =

{
1 if p̂i ,1 ≥ t

−1 otherwise

for a threshold t varying in [0, 1]

AUC score is the Area Under the ROC Curve

Penalization to avoid overfitting
Computing

ŵ , b̂ ∈ argmin
w∈Rd ,b∈R

1

n

n∑
i=1

`(yi , 〈xi ,w〉+ b)

generally leads to a bad classifier. Minimize instead

ŵ , b̂ ∈ argmin
w∈Rd ,b∈R

{1

n

n∑
i=1

`(yi , 〈xi ,w〉+ b) +
1

C
pen(w)

}
where

pen is a penalization function, it forbids w to be “too
complex”

C > 0 is a tuning or smoothing parameter, that balances
goodness-of-fit and penalization

Penalization to avoid overfitting
In the problem

ŵ , b̂ ∈ argmin
w∈Rd ,b∈R

{1

n

n∑
i=1

`(yi , 〈xi ,w〉+ b) +
1

C
pen(w)

}
,

a well-chosen C > 0, allows to avoid overfitting

Overfitting is what you
want to avoid

Which penalization? The ridge penalization considers

pen(w) =
1

2
‖w‖22 =

1

2

d∑
j=1

w2
j

It penalizes the “size” of w

In the case of the SVM (hinge loss) it has a nice interpretation:
corresponds to the margin (more on that later)

This is the most widely used penalization

It’s nice and easy

It allows to “deal” with correlated features (more on that
later)

It actually helps training! With a ridge penalization, the
optimization problem is easier (more on that later)

There is another desirable property on ŵ

If ŵj = 0, then feature j has no impact on the prediction:

ŷ = sign(〈x , ŵ〉+ b̂)

If we have many features (d is large), it would be nice if ŵ
contained zeros, and many of them

Means that only few features are statistically relevant.

Means that only few features are useful to predict the label

Leads to a simpler model, with a “reduced” dimension

How to do it ?

Tempting to use

ŵ , b̂ ∈ argmin
w∈Rd ,b∈ R

{1

n

n∑
i=1

`(yi , 〈xi ,w〉+ b) +
1

C
‖w‖0

}
,

where
‖w‖0 = #{j ∈ {1, . . . , d} : wj 6= 0}.

To solve this, explore all possible supports of w . Too long!
(NP-hard)

Find a convex proxy of ‖ · ‖0: the `1-norm ‖w‖1 =
∑d

j=1 |wj |

Why does it induce sparsity?

Why `2 (ridge) does not induce sparsity?

A direct computation
Consider the minimization problem

min
z ′∈R

1

2
(z ′ − z)2 + λ|z ′|

for λ > 0 and z ∈ R
Derivative at 0+: d+ = λ− z

Derivative at 0−: d− = −λ− z

Let z∗ be the solution

z∗ = 0 iff d+ ≥ 0 and d− ≤ 0, namely |z | ≤ λ
z∗ ≥ 0 iff d+ ≤ 0, namely z ≥ λ and z∗ = z − λ
z∗ ≤ 0 iff d− ≥ 0, namely z ≤ −λ and z∗ = z + λ

Hence
z∗ = sign(z)(|z | − λ)+.

argmin
z ′∈R

1

2
(z ′ − z)2 +

1

C
|z ′| = sign(z)

(
|z | − 1

C

)
+

so that

argmin
w ′∈Rd

1

2
‖w ′ − w‖22 +

1

C
‖w ′‖1 = sign(w)�

(
|w | − 1

C

)
+
.

Example with C = 1

Particular instances of problem

ŵ , b̂ ∈ argmin
w∈Rd ,b∈ R

{1

n

n∑
i=1

`(yi , 〈xi ,w〉+ b) +
1

C
pen(w)

}
,

For `(y , y ′) = 1
2(y − y ′)2 and pen(w) = 1

2‖w‖
2
2, the problem is

called ridge regression

For `(y , y ′) = 1
2(y − y ′)2 and pen(w) = ‖w‖1, the problem is

called Lasso (Least absolute shrinkage and selection operator)

For `(y , y ′) = log(1 + e−yu
′
) and pen(w) = ‖w‖1, the problem is

called `1-penalized logistic regression

Many combinations possible...

The combinations

(linear regression or logistic) + (ridge or `1)

are the most wildely used

Another penalization is

pen(w) =
1

2
‖w‖22 + α‖w‖1

called elastic-net, benefits from both the advantages of ridge and
`1 penalization (where α ≥ 0 balances the two)

Cross-validation

Generalization is the goal of supervised learning

A trained classifier has to be generalizable. It must be able
to work on other data than the training dataset

Generalizable means “works without overfitting”

This can be achieved using cross-validation

There is no machine learning without cross-validation at
some point!

In the case of penalization, we need to choose a penalization
parameter C that generalizes

V-Fold cross-validation

Most standard cross-validation technique

Take V = 5 or V = 10. Pick a random partition I1, . . . , IV of
{1, . . . , n}, where |Iv | ≈ n

V for any v = 1, . . . ,V

Consider a set
C = {C1, . . .CK}

of possible values for C . For each v = 1, . . . ,V

Put Iv ,train = ∪v ′ 6=v Iv ′ and Iv ,test = Iv

For each C ∈ C, find

ŵv ,C ∈ argmin
w

{ 1

|Iv ,train|
∑

i∈Iv,train

`(yi , 〈xi ,w〉) +
1

C
pen(w)

}
Take

Ĉ ∈ argmin
C∈C

V∑
v=1

∑
i∈Iv,test

`(yi , 〈xi , ŵv ,C 〉)

Remark: depending on the problem, we might use a different loss
(or score) for choosing Ĉ

Training error:

C 7→
V∑

v=1

∑
i∈Iv,train

`(yi , 〈xi , ŵv ,C 〉)

Testing, validation or cross-validation error:

C 7→
V∑

v=1

∑
i∈Iv,test

`(yi , 〈xi , ŵv ,C 〉)

Next week

The linear SVM: the hinge loss

Kernels methods

And some jokes too...

Thank you!

