Introduction to machine learning

Masters M2MO \& MIDS

Stéphane Gaïffas

Al Université de Paris

Who I am ?

- Pr. Stéphane Gaïffas
- LPSM, Université de Paris
- DMA, Ecole normale supérieure
- https://stephanegaiffas.github.io/
- stephane.gaiffas@math.univ-paris-diderot.fr

Teasers: data science or statistics?

Jeremy Jarvis
@jeremyjarvis
"A data scientist is a statistician who lives in San Fransisco" \#monkigras pic.twitter.com/HypLL3Cnye 12:13 PM - 30 Jan 2014

4 $七 7$ 1,475 841

Big Data Borat
@BigDataBorat
Follow

Data Science is statistics on a Mac.
3:32 PM - 27 Aug 2013
4. 47611

- 273

Josh Wills
Follow
@josh_wills
Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician.

```
6:55 PM - 3 May 2012
```


Teasers: an application in marketing

IF chiefmartec.com Marketing Technology Landscape

by Scott Brinker @chiefmartec http://chiefmartec.com

Teasers: an application in marketing (Real Time Bidding)

- A customer visits a webpage with his browser: a complex process of content selection and delivery begins.
- An advertiser might want to display an ad on the webpage where the user is going. The webpage belongs to a publisher.
- The publisher sells ad space to advertisers who want to reach customers

In some cases, an auction starts: RTB (Real Time Bidding)

Teasers: an application in marketing (Real Time Bidding)

- Advertisers have $\mathbf{1 0 m s}$ (!) to give a price: they need to assess quickly how willing they are to display the ad to this customer
- Machine learning is used here to predict the probability of click on the ad. Time constraint: few model parameters to answer quickly
- Feature selection / dimension reduction is crucial here Full process takes $<100 \mathrm{~ms}$

Teasers: an application in marketing (Real Time Bidding)

Some figures:

- 10 million prediction of click probability per second
- answers within 10 ms
- stores 20 Terabytes of data daily

Aim

- Based on past data, you want to find users that will click on some ads

This problem can be formulated as a binary classification problem

Classification $=$ supervised learning with a binary label

Setting

- You have past/historical data, containing data about individuals $i=1, \ldots, n$
- You have a features vector $x_{i} \in \mathbb{R}^{d}$ for each individual i
- For each i, you know if he/she clicked $\left(y_{i}=1\right)$ or not $\left(y_{i}=-1\right)$
- We call $y_{i} \in\{-1,1\}$ the label of i
- $\left(x_{i}, y_{i}\right)$ are i.i.d realizations of (X, Y)

Aim

- Given a features vector x (with no corresponding label), predict a label $\hat{y} \in\{-1,1\}$
- Use data $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ to construct a classifier

Many ways to separate points!

Linear SVM

Random Forest

Today: model-based classification

- Naive Bayes
- Linear discriminant analysis (LDA)
- Quadratic discriminant analysis (QDA)
- Logistic regression
- Penalization
- Cross-validation

Probabilistic / statistical approach

- Model the distribution of $Y \mid X$
- Construct estimators $\hat{p}_{1}(x)$ and $\hat{p}_{-1}(x)$ of

$$
p_{1}(x)=\mathbb{P}(Y=1 \mid X=x) \quad \text { and } \quad p_{-1}(x)=1-p_{1}(x)
$$

- Given x, classify using

$$
\hat{y}= \begin{cases}1 & \text { if } \hat{p}_{1}(x) \geq t \\ -1 & \text { otherwise }\end{cases}
$$

for some threshold $t \in(0,1)$

Bayes formula. We know that

$$
\begin{aligned}
p_{y}(x)=\mathbb{P}(Y=y \mid X=x) & =\frac{\mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y)}{\mathbb{P}(X=x)} \\
& =\frac{\mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y)}{\sum_{y^{\prime}=-1,1} \mathbb{P}\left(X=x \mid Y=y^{\prime}\right) \mathbb{P}\left(Y=y^{\prime}\right)}
\end{aligned}
$$

If we know the distribution of $X \mid Y$ and the distribution of Y, we know the distribution of $Y \mid X$

Bayes classifier. Classify using Bayes formula, given that:

- We model $\mathbb{P}(X \mid Y)$
- We are able to estimate $\mathbb{P}(X \mid Y)$ based on data

Maximum a posteriori. Classify using the discriminant functions

$$
\delta_{y}(x)=\log \mathbb{P}(X=x \mid Y=y)+\log \mathbb{P}(Y=y)
$$

for $y=1,-1$ and decide (largest, beyond a threshold, etc.)

Remark.

- Different models on the distribution of $X \mid Y$ leads to different classifiers
- The simplest one is the Naive Bayes
- Then, the most standard are Linear Discriminant Analysis (LDA) and Quadratic discriminant Analysis (QDA)

Naive Bayes. A crude modeling for $\mathbb{P}(X \mid Y)$: assume features X^{j} are independent conditionally on Y :

$$
\mathbb{P}(X=x \mid Y=y)=\prod_{j=1}^{d} \mathbb{P}\left(X^{j}=x^{j} \mid Y=y\right)
$$

Model the univariate distribution $X^{j} \mid Y$: for instance, assume that

$$
\mathbb{P}\left(X^{j} \mid Y=y\right)=\operatorname{Normal}\left(\mu_{j, y}, \sigma_{j, y}^{2}\right)
$$

parameters $\mu_{j, y}$ and $\sigma_{j, y}^{2}$ easily estimated by MLE

- If the feature X^{j} is discrete, use a Bernoulli or multinomial distribution
- Leads to a classifier which is very easy to compute
- Requires only the computation of some averages (MLE)

Discriminant Analysis. Assume that

$$
\mathbb{P}(X \mid Y=y)=\operatorname{Normal}\left(\mu_{y}, \Sigma_{y}\right)
$$

where we recall that the density of $\operatorname{Normal}(\mu, \Sigma)$ is given by

$$
f(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
$$

In this case, discriminant functions are

$$
\begin{aligned}
\delta_{y}(x)= & \log \mathbb{P}(X=x \mid Y=y)+\log \mathbb{P}(Y=y) \\
= & -\frac{1}{2}\left(x-\mu_{y}\right)^{\top} \Sigma_{y}^{-1}\left(x-\mu_{y}\right)-\frac{d}{2} \ln (2 \pi) \\
& -\frac{1}{2} \log \operatorname{det} \Sigma_{y}+\log \mathbb{P}(Y=y)
\end{aligned}
$$

Estimation. Use "natural" estimators, obtained by maximum likelihood estimation. Define for $y \in\{-1,1\}$

$$
I_{y}=\left\{i=1, \ldots, n: y_{i}=y\right\} \quad \text { and } \quad n_{y}=\left|I_{y}\right|
$$

MLE estimators are given by

$$
\begin{aligned}
\hat{\mathbb{P}}(Y=y) & =\frac{n_{y}}{n}, \quad \hat{\mu}_{y}=\frac{1}{n_{y}} \sum_{i \in l_{y}} x_{i}, \\
\hat{\Sigma}_{y} & =\frac{1}{n_{y}} \sum_{i \in l_{y}}\left(x_{i}-\hat{\mu}_{y}\right)\left(x_{i}-\hat{\mu}_{y}\right)^{\top}
\end{aligned}
$$

for $y \in\{-1,1\}$. These are simply the proportion, sample mean and sample covariance within each group of labels

Linear Discriminant Analysis (LDA)

- Assumes that $\Sigma=\Sigma_{1}=\Sigma_{-1}$
- All groups have the same correlation structure
- In this case decision function is linear $\langle x, w\rangle \geq c$ with

$$
\begin{aligned}
w= & \Sigma^{-1}\left(\mu_{1}-\mu_{-1}\right) \\
c= & \frac{1}{2}\left(\left\langle\mu_{1}, \Sigma^{-1} \mu_{1}\right\rangle-\left\langle\mu_{-1}, \Sigma^{-1} \mu_{-1}\right\rangle\right) \\
& +\log \left(\frac{\mathbb{P}(Y=1 \mid X=x)}{\mathbb{P}(Y=-1 \mid X=x)}\right)
\end{aligned}
$$

Quadratic Discriminant Analysis (QDA)

- Assumes that $\Sigma_{1} \neq \Sigma_{-1}$
- Decision function is quadratic
cf. Exercice 1 from exos1.pdf

Logistic regression

- By far the most widely used classification algorithm
- We want to explain the label y based on x, we want to "regress" y on x
- Models the distribution of $Y \mid X$

For $y \in\{-1,1\}$, we consider the model

$$
\mathbb{P}(Y=1 \mid X=x)=\sigma\left(x^{\top} w+b\right)
$$

where $w \in \mathbb{R}^{d}$ is a vector of model weights and $b \in \mathbb{R}$ is the intercept, and where σ is the sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- The sigmoid choice really is a choice. It is a modelling choice.
- It's a way to map $\mathbb{R} \rightarrow[0,1]$ (we want to model a probability)
- We could also consider

$$
\mathbb{P}(Y=1 \mid X=x)=F(\langle x, w\rangle+b)
$$

for any distribution function F. Another popular choice is the Gaussian distribution

$$
F(z)=\mathbb{P}(N(0,1) \leq z),
$$

which leads to another loss called probit

- However, the sigmoid choice has the following nice interpretation: an easy computation leads to

$$
\log \left(\frac{\mathbb{P}(Y=1 \mid X=x)}{\mathbb{P}(Y=-1 \mid X=x)}\right)=\langle x, w\rangle+b
$$

This quantity is called the log-odd ratio

- Note that

$$
\mathbb{P}(Y=1 \mid X=x) \geq \mathbb{P}(Y=-1 \mid X=x)
$$

iff

$$
\langle x, w\rangle+b \geq 0
$$

- This is a linear classification rule
- Linear with respect to the considered features x
- But, you choose the features: features engineering (more on that later)

Estimation of w and b

- We have a model for $Y \mid X$
- Data $\left(x_{i}, y_{i}\right)$ is assumed i.i.d with the same distribution as (X, Y)
- Compute estimators \hat{w} and \hat{b} by maximum likelihood estimation
- Or equivalently, minimize the minus log-likelihood
- More generally, when a model is used

$$
\text { Goodness-of-fit }=-\log \text { likelihood }
$$

- log is used mainly since averages are easier to study (and compute) than products

Likelihood is given by

$$
\begin{aligned}
& \prod_{i=1}^{n} \mathbb{P}\left(Y=y_{i} \mid X=x_{i}\right) \\
& =\prod_{i=1}^{n} \sigma\left(\left\langle x_{i}, w\right\rangle+b\right)^{\frac{1+y_{i}}{2}}\left(1-\sigma\left(\left\langle x_{i}, w\right\rangle+b\right)\right)^{\frac{1-y_{i}}{2}} \\
& =\prod_{i=1}^{n} \sigma\left(\left\langle x_{i}, w\right\rangle+b\right)^{\frac{1+y_{i}}{2}} \sigma\left(-\left\langle x_{i}, w\right\rangle-b\right)^{\frac{1-y_{i}}{2}}
\end{aligned}
$$

and the minus log-likelihood is given by

$$
\sum_{i=1}^{n} \log \left(1+e^{-y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right)}\right)
$$

Compute \hat{w} and \hat{b} as follows:

$$
(\hat{w}, \hat{b}) \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right)}\right)
$$

- It is a convex and smooth problem
- Many ways to find an approximate minimizer
- Convex optimization algorithms (more on that later)

If we introduce the logistic loss function

$$
\ell\left(y, y^{\prime}\right)=\log \left(1+e^{-y y^{\prime}}\right)
$$

then

$$
(\hat{w}, \hat{b}) \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)
$$

A goodness-of-fit

$$
(\hat{w}, \hat{b}) \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)
$$

is natural: it is an average of losses, one for each sample point
Note that

- $\ell\left(y, y^{\prime}\right)=\log \left(1+e^{-y y^{\prime}}\right)$ for logistic regression
- $\ell\left(y, y^{\prime}\right)=\frac{1}{2}\left(y-y^{\prime}\right)^{2}$ for least-squares linear regression

Other classical loss functions for binary classication

- Hinge loss (SVM), $\ell\left(y, y^{\prime}\right)=\left(1-y y^{\prime}\right)_{+}$
- Quadratic hinge loss (SVM), $\ell\left(y, y^{\prime}\right)=\frac{1}{2}\left(1-y y^{\prime}\right)_{+}^{2}$
- Huber loss $\ell\left(y, y^{\prime}\right)=-4 y y^{\prime} \mathbf{1}_{y y^{\prime}<-1}+\left(1-y y^{\prime}\right)_{+}^{2} \mathbf{1}_{y y^{\prime} \geq-1}$

- These losses can be understood as a convex approximation of the $0 / 1$ loss $\ell\left(y, y^{\prime}\right)=\mathbf{1}_{y y^{\prime} \leq 0}$

A comparison of classifiers on toy datasets

[the jupyter notebook for this figure will be on the webpage]

Standard error metrics in classification

- Precision, Recall, F-Score, AUC

For each sample i we have

- an actual label y_{i}
- a predicted label \hat{y}_{i}

We can construct the confusion matrix

with yes $=1$ and no $=-1$

Standard error metrics in classification

$$
\begin{aligned}
\text { Precision } & =\frac{\mathrm{TP}}{\#(\text { predicted } \mathrm{P})}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} \\
\text { Recall } & =\frac{\mathrm{TP}}{\#(\text { real } \mathrm{P})}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \\
\text { Accuracy } & =\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}} \\
\text { F-Score } & =2 \frac{\text { Precision } \times \text { Recall }}{\text { Precision }+ \text { Recall }}
\end{aligned}
$$

Some vocabulary

- Recall = Sensitivity
- False-Discovery Rate FDR $=1$ - Precision

ROC Curve (Receiver Operating Characteristic)

- Based on the estimated probabilities $\hat{p}_{i, 1}=\hat{\mathbb{P}}\left(Y=1 \mid X=x_{i}\right)$
- Each point A_{t} of the curve has coordinates $\left(\mathrm{FPR}_{t}, \mathrm{TPR}_{t}\right)$, where FPR_{t} and TPR_{t} are FPR and TPR of the confusion matrix obtained by the classification rule

$$
\hat{y}_{i}=\left\{\begin{array}{cl}
1 & \text { if } \hat{p}_{i, 1} \geq t \\
-1 & \text { otherwise }
\end{array}\right.
$$

for a threshold t varying in $[0,1]$

- AUC score is the Area Under the ROC Curve

Penalization to avoid overfitting

Computing

$$
\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)
$$

generally leads to a bad classifier. Minimize instead

$$
\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)+\frac{1}{C} \operatorname{pen}(w)\right\}
$$

where

- pen is a penalization function, it forbids w to be "too complex"
- $C>0$ is a tuning or smoothing parameter, that balances goodness-of-fit and penalization

Penalization to avoid overfitting

In the problem

$$
\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)+\frac{1}{C} \operatorname{pen}(w)\right\},
$$

a well-chosen $C>0$, allows to avoid overfitting

Overfitting is what you want to avoid

Which penalization? The ridge penalization considers

$$
\operatorname{pen}(w)=\frac{1}{2}\|w\|_{2}^{2}=\frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}
$$

It penalizes the "size" of w
In the case of the SVM (hinge loss) it has a nice interpretation: corresponds to the margin (more on that later)

This is the most widely used penalization

- It's nice and easy
- It allows to "deal" with correlated features (more on that later)
- It actually helps training! With a ridge penalization, the optimization problem is easier (more on that later)

There is another desirable property on \hat{w}
If $\hat{w}_{j}=0$, then feature j has no impact on the prediction:

$$
\hat{y}=\operatorname{sign}(\langle x, \hat{w}\rangle+\hat{b})
$$

If we have many features (d is large), it would be nice if \hat{w} contained zeros, and many of them

- Means that only few features are statistically relevant.
- Means that only few features are useful to predict the label Leads to a simpler model, with a "reduced" dimension

How to do it ?

Tempting to use

$$
\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)+\frac{1}{C}\|w\|_{0}\right\},
$$

where

$$
\|w\|_{0}=\#\left\{j \in\{1, \ldots, d\}: w_{j} \neq 0\right\} .
$$

To solve this, explore all possible supports of w. Too long! (NP-hard)

Find a convex proxy of $\|\cdot\|_{0}$: the ℓ_{1}-norm $\|w\|_{1}=\sum_{j=1}^{d}\left|w_{j}\right|$

Why does it induce sparsity?

Why ℓ_{2} (ridge) does not induce sparsity?

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

A direct computation

Consider the minimization problem

$$
\min _{z^{\prime} \in \mathbb{R}} \frac{1}{2}\left(z^{\prime}-z\right)^{2}+\lambda\left|z^{\prime}\right|
$$

for $\lambda>0$ and $z \in \mathbb{R}$

- Derivative at $0_{+}: d_{+}=\lambda-z$
- Derivative at $0_{-}: d_{-}=-\lambda-z$

Let z_{*} be the solution

- $z_{*}=0$ iff $d_{+} \geq 0$ and $d_{-} \leq 0$, namely $|z| \leq \lambda$
- $z_{*} \geq 0$ iff $d_{+} \leq 0$, namely $z \geq \lambda$ and $z_{*}=z-\lambda$
- $z_{*} \leq 0$ iff $d_{-} \geq 0$, namely $z \leq-\lambda$ and $z_{*}=z+\lambda$

Hence

$$
z_{*}=\operatorname{sign}(z)(|z|-\lambda)_{+} .
$$

$$
\underset{z^{\prime} \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2}\left(z^{\prime}-z\right)^{2}+\frac{1}{C}\left|z^{\prime}\right|=\operatorname{sign}(z)\left(|z|-\frac{1}{C}\right)_{+}
$$

so that

$$
\underset{w^{\prime} \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{2}\left\|w^{\prime}-w\right\|_{2}^{2}+\frac{1}{C}\left\|w^{\prime}\right\|_{1}=\operatorname{sign}(w) \odot\left(|w|-\frac{1}{C}\right)_{+} .
$$

Example with $C=1$

Particular instances of problem

$$
\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)+\frac{1}{C} \operatorname{pen}(w)\right\},
$$

For $\ell\left(y, y^{\prime}\right)=\frac{1}{2}\left(y-y^{\prime}\right)^{2}$ and $\operatorname{pen}(w)=\frac{1}{2}\|w\|_{2}^{2}$, the problem is called ridge regression

For $\ell\left(y, y^{\prime}\right)=\frac{1}{2}\left(y-y^{\prime}\right)^{2}$ and $\operatorname{pen}(w)=\|w\|_{1}$, the problem is called Lasso (Least absolute shrinkage and selection operator)

For $\ell\left(y, y^{\prime}\right)=\log \left(1+e^{-y u^{\prime}}\right)$ and $\operatorname{pen}(w)=\|w\|_{1}$, the problem is called ℓ_{1}-penalized logistic regression

Many combinations possible...

The combinations

$$
(\text { linear regression or logistic })+\left(\text { ridge or } \ell_{1}\right)
$$

are the most wildely used
Another penalization is

$$
\operatorname{pen}(w)=\frac{1}{2}\|w\|_{2}^{2}+\alpha\|w\|_{1}
$$

called elastic-net, benefits from both the advantages of ridge and ℓ_{1} penalization (where $\alpha \geq 0$ balances the two)

Cross-validation

- Generalization is the goal of supervised learning
- A trained classifier has to be generalizable. It must be able to work on other data than the training dataset
- Generalizable means "works without overfitting"
- This can be achieved using cross-validation
- There is no machine learning without cross-validation at some point!
- In the case of penalization, we need to choose a penalization parameter C that generalizes

V-Fold cross-validation

- Most standard cross-validation technique
- Take $V=5$ or $V=10$. Pick a random partition I_{1}, \ldots, I_{V} of $\{1, \ldots, n\}$, where $\left|I_{v}\right| \approx \frac{n}{V}$ for any $v=1, \ldots, V$

Consider a set

$$
\mathcal{C}=\left\{C_{1}, \ldots C_{K}\right\}
$$

of possible values for C. For each $v=1, \ldots, V$

- Put $I_{v, \text { train }}=\cup_{v^{\prime} \neq v} I_{v^{\prime}}$ and $I_{v, \text { test }}=I_{v}$
- For each $C \in \mathcal{C}$, find

$$
\hat{w}_{v, C} \in \underset{w}{\operatorname{argmin}}\left\{\frac{1}{\left|I_{v, \text { train }}\right|} \sum_{i \in I_{v, \text { train }}} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle\right)+\frac{1}{C} \operatorname{pen}(w)\right\}
$$

Take

$$
\hat{C} \in \underset{C \in \mathcal{C}}{\operatorname{argmin}} \sum_{v=1}^{V} \sum_{i \in I_{v, \text { test }}} \ell\left(y_{i},\left\langle x_{i}, \hat{w}_{v}, C\right\rangle\right)
$$

Remark: depending on the problem, we might use a different loss (or score) for choosing \hat{C}

Fixed data size

Model Complexity

Lambda

- Training error:

$$
C \mapsto \sum_{v=1}^{V} \sum_{i \in I_{v, \text { train }}} \ell\left(y_{i},\left\langle x_{i}, \hat{w}_{v, c}\right\rangle\right)
$$

- Testing, validation or cross-validation error:

$$
C \mapsto \sum_{v=1}^{V} \sum_{i \in I_{v, \text { test }}} \ell\left(y_{i},\left\langle x_{i}, \hat{w}_{v}, c\right\rangle\right)
$$

Next week

- The linear SVM: the hinge loss
- Kernels methods
- And some jokes too...

Thank you！

«ロ〉4向〉4 三

