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Today

Again binary classification

The linear SVM

Construction of the hinge loss

Setting

Binary classification problem

We observe a training dataset D of pairs (xi , yi ) for
i = 1, . . . , n

Features xi ∈ Rd and labels yi ∈ {−1, 1}
Aim is to learn a classification rule that generalizes well

Given a features vector x ∈ Rd , we want to predict the label y

Without overfitting



Linear classification. Why?

Let’s start simple!

On very large datasets (n is large, say n ≥ 107), no other
choice (training complexity)

Big data paradigm: lots of data ⇒ simple methods are enough

A linear classifier

Learn ŵ ∈ Rd and b̂ such that

ŷ = sign(〈x , ŵ〉+ b̂)

is a good classifier



A dataset is linearly separable if we can find an hyperplane H
that puts

Points xi ∈ Rd such that yi = 1 on one side of the hyperplane

Points xi ∈ Rd such that yi = −1 on the other

H do not pass through a point xi



An hyperplane

H = {x ∈ Rd : 〈w , x〉+ b = 0}

is a translation of a set of vectors orthogonal to w

w ∈ Rd is a non-zero vector normal to the hyperplane

b ∈ R is a scalar



Definition of H is invariant by multiplication of w and b by a
non-zero scalar

If H do not pass through any sample point xi , we can scale w and
b so that

min
(x ,y)∈D

|〈w , x〉+ b| = 1

For such w and b, we call H the canonical hyperplane



The distance of any point x ′ ∈ Rd to H is given by

|〈w , x ′〉+ b|
‖w‖

So, if H is a canonical hyperplane, its margin is given by

min
(x ,y)∈D

|〈w , x〉+ b|
‖w‖

=
1

‖w‖
.



In summary: if D is strictly linearly separable, we can find a
canonical separating hyperplane

H = {x ∈ Rd : 〈w , x〉+ b = 0}.

that satisfies

|〈w , xi 〉+ b| ≥ 1 for any i = 1, . . . , n,

which entails that a point xi is correctly classified if

yi (〈xi ,w〉+ b) ≥ 1.

The margin of H is equal to 1/‖w‖.



Linear SVM: separable case
From that, we deduce that a way of classifying D with maximum
margin is to solve the following problem:

min
w∈Rd ,b∈R

1

2
‖w‖22

subject to yi (〈xi ,w〉+ b) ≥ 1 for all i = 1, . . . , n

Note that:

This problem admits a unique solution

It is a “quadratic programming” problem, which is easy to
solve numerically

Dedicated optimization algorithms can solve this on a large
scale very efficiently



Some tools from constrained optimization

Consider a constrained optimization problem

min
x∈Rd

f (x)

subject to gi (x) ≤ 0 for all i = 1, . . . , n

where f , g1, . . . , gn : Rd → R
We denote P∗ = f (x∗) the minimum of this objective
(minimum of the primal)

The associated Lagrangian is the function given on Rd × Rn
+

by

L(x , α) = f (x) +
n∑

i=1

αigi (x)

for Lagrange or dual variables α = (α1, . . . , αn) ∈ Rn
+



The Lagrange dual function is defined by

D(α) = inf
x∈Rd

L(x , α) = inf
x∈Rd

(
f (x) +

n∑
i=1

αigi (x)
)

for α ∈ Rn
+

D is always concave, as the infimum of linear functions

We denote D∗ = D(α∗) = maxα≥0D(α) the optimal value of
the dual. It is a convex problem (maximum of a concave
function)

For any feasible x and any α ≥ 0 we have D(α) ≤ f (x),
hence

D∗ ≤ P∗

This is called the weak duality inequality and always holds

Something that does not always holds is strong duality:

D∗ = P∗



Strong duality holds under constraint qualitications (sufficient
but not necessary)

Probably the best known one is strong duality:

The primal problem is convex: f , g1, . . . , gn are convex

Slater’s condition holds: there is some strictly feasible point
x ∈ Rd such that

gi (x) < 0 for all i = 1, . . . , n

Slater’s condition is obvious for affine functions: inequality
no longer strict, reduces to the original constraint gi (x) ≤ 0



Now, a fundamental tool: KKT theorem (Karush-Kuhn-Tucker)

Assume that f , g1, . . . , gn are differentiable, assume strong
duality.

Then, x∗ ∈ Rd is a solution of the primal problem if and only
if there is α∗ ∈ Rn

+ such that

∇xL(x∗, α∗) = ∇f (x∗) +
n∑

i=1

α∗i ∇gi (x∗) = 0

gi (x
∗) ≤ 0 for any i = 1, . . . , n

α∗i gi (x
∗) = 0 for any i = 1, . . . , n

These are known as the KKT conditions

The last one is called complementary slackness



In summary: if

primal problem is convex and

constraint functions satisfy the Slater’s conditions

then

strong duality holds.

If in addition we have that

functions f , g1, . . . , gn are differentiable

then

KKT conditions are necessary and sufficient for optimality



Back to the Linear SVM. The problem has the form

min
w∈Rd ,b∈R

f (w)

subject to gi (w , b) ≤ 0 for all i = 1, . . . , n

where

f (w) = 1
2‖w‖

2
2 is strongly convex, since

∇2f (w) = I d � 0

Constraints are gi (w , b) ≤ 0 with affine functions

gi (w , b) = 1− yi (〈xi ,w〉+ b)

so that the constraints are qualified



We can apply the KKT theorem

Use this theorem to obtain a condition at the optimum

It will lead to crucial properties on the SVM

Allow to obtain the dual formulation of the problem

Lagragian

Introduce dual variables αi ≥ 0 for i = 1, . . . , n corresponding
to the constraints gi (w , b) ≤ 0

For w ∈ Rd , b ∈ R and α = (α1, . . . αn) ∈ Rn
+, introduce the

Lagrangian

L(w , b, α) =
1

2
‖w‖22 +

n∑
i=1

αi

(
1− yi (〈w , xi 〉+ b)

)



L(w , b, α) =
1

2
‖w‖22 +

n∑
i=1

αi

(
1− yi (〈w , xi 〉+ b)

)
KKT conditions
Set the gradient to zero

∇wL(w , b, α) = w −
n∑

i=1

αiyixi = 0 namely w =
n∑

i=1

αiyixi

∇bL(w , b, α) = −
n∑

i=1

αiyi = 0 namely
n∑

i=1

αiyi = 0

Write the complementary slackness condition

αi

(
1−yi (〈w , xi 〉+b)

)
= 0 namely αi = 0 or yi (〈w , xi 〉+b) = 1

for all i = 1, . . . , n



This entails the following properties at the optimum

There are dual variables αi ≥ 0 such that the primal solution
(w , b) satisfies

w =
n∑

i=1

αiyixi

We have that

αi 6= 0 iff yi (〈w , xi 〉+ b) = 1

This means that

w writes as a linear combination of the features vectors xi
that belong to the marginal hyperplanes
{x ∈ Rd : 〈w , x〉+ b = ±1}
These vectors xi are called support vectors

The support vectors fully define the maximum-margin hyperplane,
hence the name Support Vector Machine



Dual optimization problem
Lagrangian is

L(w , b, α) =
1

2
‖w‖22 +

n∑
i=1

αi

(
1− yi (〈w , xi 〉+ b)

)
Plug w =

∑n
i=1 αiyixi in it to obtain

L(w , b, α) =
1

2

∥∥∥ n∑
i=1

αiyixi

∥∥∥2
2

+
n∑

i=1

αi − b
n∑

i=1

αiyi

−
n∑

i ,j=1

αiαjyiyj〈xi , xj〉



Recalling that
∑n

i=1 αiyi = 0 and doing some algebra we arrive at
the dual formulation

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyj〈xi , xj〉

subject to αi ≥ 0 and
n∑

i=1

αiyi = 0 for all i = 1, . . . , n



Remarks

As in the primal formulation, it is again a quadratic
programming problem

At optimum, we have (using KKT conditions) that the
decision function is expressed using the dual variables as

x 7→ sgn (〈w , x〉+ b) = sgn
( n∑

i=1

αiyi 〈x , xi 〉+ b
)

The intercept b can be expressed for any support vector xi as

b = yi −
n∑

j=1

αjyj〈xi , xj〉



This allows to write the margin as a function of the dual variables

Multiplying the last equality by αiyi and summing entails

n∑
i=1

αiyib =
n∑

i=1

αiy
2
i −

n∑
i ,j=1

αiαjyiyj〈xi , xj〉

Namely recalling that at optimum
∑n

i=1 αiyi = 0 and
w =

∑n
i=1 αiyixi we get

0 =
n∑

i=1

αi = ‖w‖22, namely

margin =
1

‖w‖22
=

1∑n
i=1 αi

=
1

‖α‖1

Okay, this is a nice theory, but...



Have you ever seen a dataset that looks that this?

Datasets are not linearly separable!



Keep cool and relax !

Replace the constraints

yi (〈w , xi 〉+ b) ≥ 1 for all i = 1, . . . , n,

that are too strong, by the relaxed ones

yi (〈w , xi 〉+ b) ≥ 1− si for all i = 1, . . . , n,

for slack variables s1, . . . , sn ≥ 0



Slack rope



Linear SVM: non-separable case
Relax, but keep the slacks si as small as possible (goodness-of-fit)

Replace the original problem

min
w∈Rd ,b∈R

1

2
‖w‖22

subject to yi (〈xi ,w〉+ b) ≥ 1 for all i = 1, . . . , n

by the relaxed one using slack variables:

min
w∈Rd ,b∈R,s∈Rn

1

2
‖w‖22 + C

n∑
i=1

si

subject to yi (〈xi ,w〉+ b) ≥ 1− si and si ≥ 0 for all i = 1, . . . , n

where C > 0 is the “goodness-of-fit strength”



The slack si ≥ 0 measures the the distance by which xi
violates the desired inequality yi (〈xi ,w〉+ b) ≥ 1

A vector xi with 0 < yi (〈xi ,w〉+ b) < 1 is correctly classified
but is an outlier, since si > 0

If we omit outliers, training data is correctly classified by the
hyperplane {x ∈ Rd : 〈x ,w〉+ b = 0} with a margin 1/‖w‖22
The margin 1/‖w‖22 is called a soft-margin (in the
non-separable case), while it is a hard-margin in the
separable case



Linear SVM: non-separable case
So, we arrived at:

min
w∈Rd ,b∈R,s∈Rn

1

2
‖w‖22 + C

n∑
i=1

si

subject to yi (〈xi ,w〉+ b) ≥ 1− si and si ≥ 0 for all i = 1, . . . , n

Once again:

This problem admits a unique solution

It is a quadratic programming problem

The constant C > 0 is chosen using V -fold cross-valiation



Lagrangian

L(w , b, s, α, β) =
1

2
‖w‖22 + C

n∑
i=1

si

+
n∑

i=1

αi

(
1− si − yi (〈w , xi 〉+ b)

)
−

n∑
i=1

βi si

At optimum, let’s again:

set the gradients ∇w , ∇b and ∇s to zero

write the complementary conditions



∇wL(w , b, s, α, β) = w −
n∑

i=1

αiyixi = 0 i.e. w =
n∑

i=1

αiyixi

∇bL(w , b, s, α, β) = −
n∑

i=1

αiyi = 0 i.e.
n∑

i=1

αiyi = 0

∇sL(w , b, s, α, β) = C − αi − βi = 0 i.e. αi + βi = C

and the complementary condition

αi

(
1−si−yi (〈w , xi 〉+b)

)
= 0 i.e. αi = 0 or yi (〈w , xi 〉+b) = 1−si

βi si = 0 i.e. βi = 0 or si = 0

for all i = 1, . . . , n



This means that

w =
∑n

i=1 αiyixi
If αi 6= 0 we say that xi is a support vector and in this case
yi (〈w , xi 〉+ b) = 1− si

If si = 0 then xi belongs to a margin hyperplane
If si 6= 0 then xi is an outlier and βi = 0 and then αi = C

Support vectors either belong to a marginal hyperplane, or are
outliers with αi = C



Dual problem

Plugging w =
∑n

i=1 αiyixi in L(w , b, s, α, β) leads to the
same formula as before

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyj〈xi , xj〉

with the constraints

αi ≥ 0, βi ≥ 0,
n∑

i=1

αiyi = 0, αi + βi = C

that can be rewritten for as

0 ≤ αi ≤ C ,
n∑

i=1

αiyi = 0

for all i = 1, . . . , n



Leading to the following dual problem

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyj〈xi , xj〉

subject to 0 ≤ αi ≤ C and
n∑

i=1

αiyi = 0 for all i = 1, . . . , n

This is the same problem as before, but with the extra
constraint

αi ≤ C

It is again a convex quadratic program



As in the linearly separable case, the label prediction is expressed
using the dual variables as

x 7→ sgn (〈w , x〉+ b) = sgn
( n∑

i=1

αiyi 〈x , xi 〉+ b
)

The intercept b can be expressed for a support vector xi such that
0 < αi < C as

b = yi −
n∑

j=1

αjyj〈xi , xj〉



A very important remark
The dual problem

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyj〈xi , xj〉

subject to 0 ≤ αi ≤ C and
n∑

i=1

αiyi = 0 for all i = 1, . . . , n

and the label prediction (using dual variables)

x 7→ sgn (〈w , x〉+ b) = sgn
( n∑

i=1

αiyi 〈x , xi 〉+ b
)

depends only on the features xi via their inner products 〈xi , xj〉 !

This will be particularly important next week: kernel
methods



The hinge loss
Going back to the primal problem

min
w∈Rd ,b∈R,s∈Rn

1

2
‖w‖22 + C

n∑
i=1

si

subject to yi (〈xi ,w〉+ b) ≥ 1− si and si ≥ 0 for all i = 1, . . . , n

We remark that it can be rewritten as

argmin
w∈Rd ,b∈R

1

2
‖w‖22 + C

n∑
i=1

max
(

0, 1− yi (〈xi ,w〉+ b)
)
.



Introducing the hinge loss

`(y , y ′) = max(0, 1− yy ′) = (1− yy ′)+,

the problem can be written as

argmin
w∈Rd ,b∈R

1

2
‖w‖22 + C

n∑
i=1

`(yi , 〈xi ,w〉+ b).

Leads to an alternative understanding of the linear SVM.



Another natural loss is the 0/1 loss given by

`0/1(y , z) = 1yz≤0.

Instead of the Linear SVM, it would be nice to consider

argmin
w∈Rd ,b∈R

1

2
‖w‖22 + C

n∑
i=1

1yi (〈xi ,w〉+b)≤0,

but impossible numerically (NP-hard)

Hinge loss is a convex surrogate for the 0/1 loss



The losses we’ve seen so far for classification

3 2 1 0 1 2 3
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yy
′

`(
y,
y
′ )

logistic

hinge

0-1

`0−1(y , y ′) = 1yy ′≤0 `hinge(y , y ′) = (1− yy ′)+

`logistic(y , y ′) = log(1 + e−yy
′
).



Grandmother’s recipe:



Grandmother’s recipes for logistic regression vs linear SVM

Logistic regression

Logistic regression has a nice probabilistic interpretation

Relies on the choice of the logit link function

SVM

No model, only aims at separating points

No one is not better than the other in general. Depends on the
data.

Once again, what is always important though is the construction
of the features you’ll use for training



Thank you!


