Introduction to machine learning

Masters M2MO \& MIDS

Stéphane Gaïffas

Al Université de Paris

Today

- Again binary classification
- The linear SVM
- Construction of the hinge loss

Setting

- Binary classification problem
- We observe a training dataset D of pairs $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$
- Features $x_{i} \in \mathbb{R}^{d}$ and labels $y_{i} \in\{-1,1\}$
- Aim is to learn a classification rule that generalizes well
- Given a features vector $x \in \mathbb{R}^{d}$, we want to predict the label y
- Without overfitting

Linear classification. Why?

- Let's start simple!
- On very large datasets (n is large, say $n \geq 10^{7}$), no other choice (training complexity)
- Big data paradigm: lots of data \Rightarrow simple methods are enough

A linear classifier

Learn $\hat{w} \in \mathbb{R}^{d}$ and \hat{b} such that

$$
\hat{y}=\operatorname{sign}(\langle x, \hat{w}\rangle+\hat{b})
$$

is a good classifier

A dataset is linearly separable if we can find an hyperplane H that puts

- Points $x_{i} \in \mathbb{R}^{d}$ such that $y_{i}=1$ on one side of the hyperplane
- Points $x_{i} \in \mathbb{R}^{d}$ such that $y_{i}=-1$ on the other
- H do not pass through a point x_{i}

An hyperplane

$$
H=\left\{x \in \mathbb{R}^{d}:\langle w, x\rangle+b=0\right\}
$$

is a translation of a set of vectors orthogonal to w

- $w \in \mathbb{R}^{d}$ is a non-zero vector normal to the hyperplane
- $b \in \mathbb{R}$ is a scalar

Definition of H is invariant by multiplication of w and b by a non-zero scalar

If H do not pass through any sample point x_{i}, we can scale w and b so that

$$
\min _{(x, y) \in D}|\langle w, x\rangle+b|=1
$$

For such w and b, we call H the canonical hyperplane

The distance of any point $x^{\prime} \in \mathbb{R}^{d}$ to H is given by

$$
\frac{\left|\left\langle w, x^{\prime}\right\rangle+b\right|}{\|w\|}
$$

So, if H is a canonical hyperplane, its margin is given by

$$
\min _{(x, y) \in D} \frac{|\langle w, x\rangle+b|}{\|w\|}=\frac{1}{\|w\|}
$$

In summary: if D is strictly linearly separable, we can find a canonical separating hyperplane

$$
H=\left\{x \in \mathbb{R}^{d}:\langle w, x\rangle+b=0\right\}
$$

that satisfies

$$
\left|\left\langle w, x_{i}\right\rangle+b\right| \geq 1 \text { for any } i=1, \ldots, n
$$

which entails that a point x_{i} is correctly classified if

$$
y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1
$$

The margin of H is equal to $1 /\|w\|$.

Linear SVM: separable case

From that, we deduce that a way of classifying D with maximum margin is to solve the following problem:

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2}\|w\|_{2}^{2} \\
& \text { subject to } y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1 \text { for all } i=1, \ldots, n
\end{aligned}
$$

Note that:

- This problem admits a unique solution
- It is a "quadratic programming" problem, which is easy to solve numerically
- Dedicated optimization algorithms can solve this on a large scale very efficiently

Some tools from constrained optimization

- Consider a constrained optimization problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{d}} f(x) \\
& \text { subject to } g_{i}(x) \leq 0 \text { for all } i=1, \ldots, n
\end{aligned}
$$

where $f, g_{1}, \ldots, g_{n}: \mathbb{R}^{d} \rightarrow \mathbb{R}$

- We denote $P^{*}=f\left(x^{*}\right)$ the minimum of this objective (minimum of the primal)
- The associated Lagrangian is the function given on $\mathbb{R}^{d} \times \mathbb{R}_{+}^{n}$ by

$$
L(x, \alpha)=f(x)+\sum_{i=1}^{n} \alpha_{i} g_{i}(x)
$$

for Lagrange or dual variables $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{+}^{n}$

- The Lagrange dual function is defined by

$$
D(\alpha)=\inf _{x \in \mathbb{R}^{d}} L(x, \alpha)=\inf _{x \in \mathbb{R}^{d}}\left(f(x)+\sum_{i=1}^{n} \alpha_{i} g_{i}(x)\right)
$$

for $\alpha \in \mathbb{R}_{+}^{n}$

- D is always concave, as the infimum of linear functions
- We denote $D^{*}=D\left(\alpha^{*}\right)=\max _{\alpha \geq 0} D(\alpha)$ the optimal value of the dual. It is a convex problem (maximum of a concave function)
- For any feasible x and any $\alpha \geq 0$ we have $D(\alpha) \leq f(x)$, hence

$$
D^{*} \leq P^{*}
$$

This is called the weak duality inequality and always holds

- Something that does not always holds is strong duality:

$$
D^{*}=P^{*}
$$

Strong duality holds under constraint qualitications (sufficient but not necessary)
Probably the best known one is strong duality:

- The primal problem is convex: f, g_{1}, \ldots, g_{n} are convex
- Slater's condition holds: there is some strictly feasible point $x \in \mathbb{R}^{d}$ such that

$$
g_{i}(x)<0 \quad \text { for all } i=1, \ldots, n
$$

- Slater's condition is obvious for affine functions: inequality no longer strict, reduces to the original constraint $g_{i}(x) \leq 0$

Now, a fundamental tool: KKT theorem (Karush-Kuhn-Tucker)

- Assume that f, g_{1}, \ldots, g_{n} are differentiable, assume strong duality.
- Then, $x^{*} \in \mathbb{R}^{d}$ is a solution of the primal problem if and only if there is $\alpha^{*} \in \mathbb{R}_{+}^{n}$ such that

$$
\begin{aligned}
\nabla_{x} L\left(x^{*}, \alpha^{*}\right) & =\nabla f\left(x^{*}\right)+\sum_{i=1}^{n} \alpha_{i}^{*} \nabla g_{i}\left(x^{*}\right)=0 \\
g_{i}\left(x^{*}\right) & \leq 0 \quad \text { for any } i=1, \ldots, n \\
\alpha_{i}^{*} g_{i}\left(x^{*}\right) & =0 \quad \text { for any } i=1, \ldots, n
\end{aligned}
$$

- These are known as the KKT conditions
- The last one is called complementary slackness

In summary: if

- primal problem is convex and
- constraint functions satisfy the Slater's conditions
then
- strong duality holds.

If in addition we have that

- functions f, g_{1}, \ldots, g_{n} are differentiable then
- KKT conditions are necessary and sufficient for optimality

Back to the Linear SVM. The problem has the form

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} f(w) \\
& \text { subject to } g_{i}(w, b) \leq 0 \text { for all } i=1, \ldots, n
\end{aligned}
$$

where

- $f(w)=\frac{1}{2}\|w\|_{2}^{2}$ is strongly convex, since

$$
\nabla^{2} f(w)=I_{d} \succ 0
$$

- Constraints are $g_{i}(w, b) \leq 0$ with affine functions

$$
g_{i}(w, b)=1-y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right)
$$

so that the constraints are qualified

We can apply the KKT theorem
Use this theorem to obtain a condition at the optimum

- It will lead to crucial properties on the SVM
- Allow to obtain the dual formulation of the problem

Lagragian

- Introduce dual variables $\alpha_{i} \geq 0$ for $i=1, \ldots, n$ corresponding to the constraints $g_{i}(w, b) \leq 0$
- For $w \in \mathbb{R}^{d}, b \in \mathbb{R}$ and $\alpha=\left(\alpha_{1}, \ldots \alpha_{n}\right) \in \mathbb{R}_{+}^{n}$, introduce the Lagrangian

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|_{2}^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)
$$

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|_{2}^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)
$$

KKT conditions

Set the gradient to zero

$$
\begin{aligned}
& \nabla_{w} L(w, b, \alpha)=w-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=0 \quad \text { namely } \quad w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \\
& \nabla_{b} L(w, b, \alpha)=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { namely } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

Write the complementary slackness condition $\alpha_{i}\left(1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)=0 \quad$ namely $\quad \alpha_{i}=0$ or $y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)=1$ for all $i=1, \ldots, n$

This entails the following properties at the optimum

- There are dual variables $\alpha_{i} \geq 0$ such that the primal solution (w, b) satisfies

$$
w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

- We have that

$$
\alpha_{i} \neq 0 \quad \text { iff } \quad y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)=1
$$

This means that

- w writes as a linear combination of the features vectors x_{i} that belong to the marginal hyperplanes $\left\{x \in \mathbb{R}^{d}:\langle w, x\rangle+b= \pm 1\right\}$
- These vectors x_{i} are called support vectors

The support vectors fully define the maximum-margin hyperplane, hence the name Support Vector Machine

Dual optimization problem

Lagrangian is

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|_{2}^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)
$$

Plug $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$ in it to obtain

$$
\begin{aligned}
L(w, b, \alpha)= & \frac{1}{2}\left\|\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right\|_{2}^{2}+\sum_{i=1}^{n} \alpha_{i}-b \sum_{i=1}^{n} \alpha_{i} y_{i} \\
& -\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle
\end{aligned}
$$

Recalling that $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$ and doing some algebra we arrive at the dual formulation

$$
\begin{array}{ll}
\max _{\alpha \in \mathbb{R}^{n}} \quad \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \\
\text { subject to } \quad \alpha_{i} \geq 0 \text { and } \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \text { for all } i=1, \ldots, n
\end{array}
$$

Remarks

- As in the primal formulation, it is again a quadratic programming problem
- At optimum, we have (using KKT conditions) that the decision function is expressed using the dual variables as

$$
x \mapsto \operatorname{sgn}(\langle w, x\rangle+b)=\operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle x, x_{i}\right\rangle+b\right)
$$

- The intercept b can be expressed for any support vector x_{i} as

$$
b=y_{i}-\sum_{j=1}^{n} \alpha_{j} y_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

This allows to write the margin as a function of the dual variables

- Multiplying the last equality by $\alpha_{i} y_{i}$ and summing entails

$$
\sum_{i=1}^{n} \alpha_{i} y_{i} b=\sum_{i=1}^{n} \alpha_{i} y_{i}^{2}-\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

- Namely recalling that at optimum $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$ and $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$ we get

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} \alpha_{i}=\|w\|_{2}^{2}, \quad \text { namely } \\
\operatorname{margin} & =\frac{1}{\|w\|_{2}^{2}}=\frac{1}{\sum_{i=1}^{n} \alpha_{i}}=\frac{1}{\|\alpha\|_{1}}
\end{aligned}
$$

- Okay, this is a nice theory, but...

Have you ever seen a dataset that looks that this?

Datasets are not linearly separable!

Keep cool and relax!
Replace the constraints

$$
y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1 \quad \text { for all } \quad i=1, \ldots, n
$$

that are too strong, by the relaxed ones

$$
y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1-s_{i} \quad \text { for all } \quad i=1, \ldots, n
$$

for slack variables $s_{1}, \ldots, s_{n} \geq 0$

Slack rope

Linear SVM: non-separable case

Relax, but keep the slacks s_{i} as small as possible (goodness-of-fit)
Replace the original problem

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2}\|w\|_{2}^{2} \\
& \text { subject to } y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1 \text { for all } i=1, \ldots, n
\end{aligned}
$$

by the relaxed one using slack variables:
$\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, s \in \mathbb{R}^{n}} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} s_{i}$
subject to $y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1-s_{i}$ and $s_{i} \geq 0$ for all $i=1, \ldots, n$
where $C>0$ is the "goodness-of-fit strength"

- The slack $s_{i} \geq 0$ measures the the distance by which x_{i} violates the desired inequality $y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1$
- A vector x_{i} with $0<y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right)<1$ is correctly classified but is an outlier, since $s_{i}>0$
- If we omit outliers, training data is correctly classified by the hyperplane $\left\{x \in \mathbb{R}^{d}:\langle x, w\rangle+b=0\right\}$ with a margin $1 /\|w\|_{2}^{2}$
- The margin $1 /\|w\|_{2}^{2}$ is called a soft-margin (in the non-separable case), while it is a hard-margin in the separable case

Linear SVM: non-separable case

So, we arrived at:
$\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, s \in \mathbb{R}^{n}} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} s_{i}$
subject to $y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1-s_{i}$ and $s_{i} \geq 0$ for all $i=1, \ldots, n$
Once again:

- This problem admits a unique solution
- It is a quadratic programming problem

The constant $C>0$ is chosen using V-fold cross-valiation

Lagrangian

$$
\begin{aligned}
L(w, b, s, \alpha, \beta)= & \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} s_{i} \\
& +\sum_{i=1}^{n} \alpha_{i}\left(1-s_{i}-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)-\sum_{i=1}^{n} \beta_{i} s_{i}
\end{aligned}
$$

At optimum, let's again:

- set the gradients ∇_{w}, ∇_{b} and ∇_{s} to zero
- write the complementary conditions

$$
\begin{aligned}
& \nabla_{w} L(w, b, s, \alpha, \beta)=w-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=0 \quad \text { i.e. } \quad w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \\
& \nabla_{b} L(w, b, s, \alpha, \beta)=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { i.e. } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \nabla_{s} L(w, b, s, \alpha, \beta)=C-\alpha_{i}-\beta_{i}=0 \quad \text { i.e. } \quad \alpha_{i}+\beta_{i}=C
\end{aligned}
$$

and the complementary condition

$$
\alpha_{i}\left(1-s_{i}-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)=0 \text { i.e. } \alpha_{i}=0 \text { or } y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)=1-s_{i}
$$

$$
\beta_{i} s_{i}=0 \quad \text { i.e. } \quad \beta_{i}=0 \text { or } s_{i}=0
$$

for all $i=1, \ldots, n$

This means that

- $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$
- If $\alpha_{i} \neq 0$ we say that x_{i} is a support vector and in this case $y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)=1-s_{i}$
- If $s_{i}=0$ then x_{i} belongs to a margin hyperplane
- If $s_{i} \neq 0$ then x_{i} is an outlier and $\beta_{i}=0$ and then $\alpha_{i}=C$

Support vectors either belong to a marginal hyperplane, or are outliers with $\alpha_{i}=C$

Dual problem

- Plugging $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$ in $L(w, b, s, \alpha, \beta)$ leads to the same formula as before

$$
\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

- with the constraints

$$
\alpha_{i} \geq 0, \quad \beta_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \alpha_{i}+\beta_{i}=C
$$

that can be rewritten for as

$$
0 \leq \alpha_{i} \leq C, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

for all $i=1, \ldots, n$

Leading to the following dual problem
$\max _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle$
subject to $0 \leq \alpha_{i} \leq C$ and $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$ for all $i=1, \ldots, n$

- This is the same problem as before, but with the extra constraint

$$
\alpha_{i} \leq C
$$

- It is again a convex quadratic program

As in the linearly separable case, the label prediction is expressed using the dual variables as

$$
x \mapsto \operatorname{sgn}(\langle w, x\rangle+b)=\operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle x, x_{i}\right\rangle+b\right)
$$

The intercept b can be expressed for a support vector x_{i} such that $0<\alpha_{i}<C$ as

$$
b=y_{i}-\sum_{j=1}^{n} \alpha_{j} y_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

A very important remark

The dual problem
$\max _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle$
subject to $0 \leq \alpha_{i} \leq C$ and $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$ for all $i=1, \ldots, n$
and the label prediction (using dual variables)

$$
x \mapsto \operatorname{sgn}(\langle w, x\rangle+b)=\operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle x, x_{i}\right\rangle+b\right)
$$

depends only on the features x_{i} via their inner products $\left\langle x_{i}, x_{j}\right\rangle$!

- This will be particularly important next week: kernel methods

The hinge loss

Going back to the primal problem
$\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, s \in \mathbb{R}^{n}} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} s_{i}$
subject to $y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1-s_{i}$ and $s_{i} \geq 0$ for all $i=1, \ldots, n$

We remark that it can be rewritten as

$$
\underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right)\right) .
$$

Introducing the hinge loss

$$
\ell\left(y, y^{\prime}\right)=\max \left(0,1-y y^{\prime}\right)=\left(1-y y^{\prime}\right)_{+}
$$

the problem can be written as

$$
\underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}^{2}}{\operatorname{argmin}} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \ell\left(y_{i},\left\langle x_{i}, w\right\rangle+b\right)
$$

Leads to an alternative understanding of the linear SVM.

Another natural loss is the $0 / 1$ loss given by

$$
\ell_{0 / 1}(y, z)=\mathbf{1}_{y z \leq 0} .
$$

Instead of the Linear SVM, it would be nice to consider

$$
\underset{w \in \mathbb{R}^{d}, b \in \mathbb{R}^{2}}{\operatorname{argmin}} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \mathbf{1}_{y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \leq 0},
$$

but impossible numerically (NP-hard)
Hinge loss is a convex surrogate for the $0 / 1$ loss

The losses we've seen so far for classification

$$
\begin{aligned}
& \ell_{0-1}\left(y, y^{\prime}\right)=\mathbf{1}_{y y^{\prime} \leq 0} \quad \ell_{\text {hinge }}\left(y, y^{\prime}\right)=\left(1-y y^{\prime}\right)_{+} \\
& \ell_{\text {logistic }}\left(y, y^{\prime}\right)=\log \left(1+e^{-y y^{\prime}}\right) .
\end{aligned}
$$

Grandmother's recipe:

Grandmother's recipes for logistic regression vs linear SVM

Logistic regression

- Logistic regression has a nice probabilistic interpretation
- Relies on the choice of the logit link function

SVM

- No model, only aims at separating points

No one is not better than the other in general. Depends on the data.

Once again, what is always important though is the construction of the features you'll use for training

Thank you!

