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Today

Kernels

Kernel SVM

Kernel regression

Supervised learning setting

We observe a training dataset D of pairs (xi , yi ) for
i = 1, . . . , n

Features xi ∈ Rd and labels yi ∈ R (regression) or
yi ∈ {−1, 1} (binary classification)

Given a features vector x ∈ Rd , we want to predict the label y



Features engineering

Given raw features x1, . . . , xn ∈ Rd , we can construct new
features

For instance, we can add second order polynomials of the
features

x2i ,j , xi ,j × xi ,k for any 1 ≤ j , k ≤ d

It increases the number of features, hence the dimension of
the model weights w learned from it



A feature map

Consider a feature map ϕ : Rd → H that ”adds” all these new
features

H is an Hilbert space (eventually infinite dimensional),
endowed with an inner product 〈·, ·〉H
The decision boundary x → 〈w , ϕ(x)〉+ b = 0 is not an
hyperplane anymore (but ϕ(x)→ 〈w , ϕ(x)〉+ b = 0 is)

A common belief: increasing dimension of features space makes
data almost linearly separable



The polynomial mapping ϕ : R2 → R6 for x = (x1, x2) ∈ R2

ϕ(x) = (x21 , x
2
2 ,
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2x2, 1)

solves the XOR (Exclusive OR) classification problem

XOR : label yi is blue iff one of the coordinates of xi equals 1.

Blue and red points cannot be linearly separated in R2

But they can using the mapping ϕ, using the hyperplane
x1x2 = 0



This mapping ϕ is call polynomial mapping of order 2.

Note that for x , x ′ ∈ R2 we have

〈ϕ(x), ϕ(x ′)〉 =
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= (〈x , x ′〉+ 1)2



This motivates the definition of

K (x , x ′) = 〈ϕ(x), ϕ(x ′)〉 = (〈x , x ′〉+ c)q

where q ∈ N− {0} and c > 0. In this case K is called the
polynomial kernel of degree q.

Given a “raw feature” space X (often X = Rd), a function

K : X × X → R

is called a kernel over X .

Definition. We say that a kernel K is symmetric iff

K (x , x ′) = K (x ′, x)

for any x , x ′ ∈ X



Definition. We say that a kernel is PDS (positive definite
symetric) iff

it is symmetric

for any N ∈ N and any {x1, . . . xN} ⊂ X we have

K = [K (xi , xj)]1≤i ,j≤N � 0

meaning that K is positive semi-definite (symmetric), or
equivalently that

u>Ku =
∑

1≤i ,j≤N
uiujK (xi , xj) ≥ 0

for any u ∈ RN , or equivalently that all eigenvalues of K are
non-negative.

For a sample x1, . . . , xn we call K = [K (xi , xj)]1≤i ,j≤n the Gram
matrix of this sample.



Definition. Hadamard product A� B between two matrices A
and B (or vectors) with the same dimensions is given by

(A� B)i ,j = Ai ,j � B i ,j

Theorem. The sum, product, pointwise limit and composition
with a power series

∑
n≥0 anx

n with an ≥ 0 for all n ≥ 0 preserves
the PDS property.

Proof. Consider two N × N Gram matrices K ,K ′ of PDS kernels
K ,K ′ and take u ∈ RN . Observe that

u>(K + K ′)u = u>Ku + u>K ′u ≥ 0

So PDS is preserved by the sum and finite sums by reccurence.



Now, to prove that the product K �K ′ is PDS, write K = MM>,
where M is the square-root of K (which is SDP) and note that

u>(K �K ′)u =
∑

1≤i ,j≤N
uiujK i ,jK ′i ,j =

∑
1≤i ,j≤N

N∑
k=1

uiujM i ,kMk,jK ′i ,j

=
N∑

k=1

z>k K ′zk ≥ 0

with zk = u �M•,k .

This proves that finite products of PDS kernels is PDS.



Assume that Kn → K as n→ +∞ pointwise, where Kn is a
sequence of PDS kernels.
It means that any associated sequence of Gram matrices Kn and
the its limit K satisfies Kn → K entrywise, so that for any u ∈ RN

we have
u>Knu → u>Ku

so u>Ku ≥ 0 since u>Knu → u for all n.

This proves stability of PDS property under pointwise limit.



Now, let K be a kernel such that |K (x , x ′)| < r for all x , x ′ ∈ X
and

∑
n≥0 anx

n a power series with radius of convergence r .

By stability under sum and product, we have that

N∑
k=0

anK
n

is PDS, and

lim
N→+∞

N∑
n=0

anK
n =

∑
n≥0

anK
n

remains PDS since PDS is kept under pointwise limit.

This concludes the proof of the theorem.



Theorem. The following inequality holds for K ,K ′ two PDS
kernels

K (x , x ′)2 ≤ K (x , x)K (x ′, x ′)

for any x , x ′ ∈ X . It is called the Cauchy-Schwartz inequality for
PSD kernels.

Proof. Take x , x ′ ∈ X and consider the Gram matrix

K =

[
K (x , x) K (x , x ′)
K (x ′, x) K (x ′, x ′)

]
.

Since K is PDS, then K � 0, which entails that

0 ≤ det K = K (x , x)K (x ′, x ′)− K (x , x ′)2



Theorem [Reproducing kernel Hilbert space]. Let K : X × X → R
be a PDS kernel. Then, there is a Hilbert space H endowed with
an inner product 〈·, ·〉 and a mapping ϕ : X → H such that

K (x , x ′) = 〈ϕ(x), ϕ(x ′)〉

and such that the reproducing property holds:

h(x) = 〈h,K (x , ·)〉

for any h ∈ H and x ∈ X .

Proof. Available on the moodle. Think of H as containing limits
of functions

N∑
i=1

aiK (xi , ·)

for any a1, . . . , aN ∈ R and x1, . . . , xN ∈ X .

Remark. Stresses the fact that a PDS kernel is some kind of
similarity measure, since it is actually an inner product



We say that H is a reproducting kernel Hilbert space
associated to the kernel K .

The Hilbert space H is called the features space associated
to K

The corresponding mapping ϕ : X → H is called the features
mapping

H is endowed with an inner product 〈h, h′〉 for h, h′ ∈ H and a
norm ‖h‖ =

√
〈h, h〉

The feature space might is not unique in general

In summary

Choose a kernel K you think relevant, if it’s PDS, then there
is a mapping ϕ and a RKHS H for it

Feature engineernig becomes kernel engineering with kernel
methods



Definition. The normalized kernel K ′ associated to a kernel K is
given by

K ′(x , x ′) =
K (x , x ′)√

K (x , x)K (x ′, x ′)

if K (x , x)K (x ′, x ′) > 0 and K (x , x ′) = 0 otherwise.

Theorem. If K is a PDS kernel, its normalized kernel K ′ is PDS.

Remark. We have that K (x , x ′) is the cosine of the angle between
ϕ(x) and ϕ(x ′) if K is a normalized kernel (if none is zero).
Once again, K (x , x ′) is a similarity measure between x and x ′



Proof. Let x1, . . . , xN ∈ X and c ∈ RN . If K (xi , xi ) = 0 or
K (xj , xj) = 0 then K (xi , xj) = 0 using Cauchy-Schwartz, so
K ′(xi , xj) = 0.

So, we can assume K (xi , xi ) > 0 for all i = 1, . . . ,N and write the
following:∑

1≤i ,j≤N

cicjK (xi , xj)√
K (xi , xi )K (xj , xj)

=
∑

1≤i ,j≤N

cicj〈ϕ(xi ), ϕ(xj)〉
‖ϕ(xi )‖‖ϕ(xj)‖

=

∥∥∥∥ N∑
i=1

ciϕ(xi )

‖ϕ(xi )‖

∥∥∥∥2 ≥ 0

which proves the theorem.

Remark. If K is a normalized kernel, then

‖ϕ(x)‖ = 〈ϕ(x), ϕ(x)〉 = K (x , x) = 1

for any x ∈ X



The polynomial kernel. For c > 0 and q ∈ N− {0} we define the
polynomial kernel

K (x , x ′) = (〈x , x ′〉+ c)q.

It is a PDS kernel

Proof. It is the power of the PDS kernel (x , x ′) 7→ 〈x , x ′〉+ b.

We already computed its mapping ϕ(x): it contains all the
monomials of degree less than q of the coordinates of x



The RBF kernel (Radial Basis Function). For γ > 0 it is given by

K (x , x ′) = exp(−γ‖x − x ′‖22)

Theorem. The RBF kernel is a PDS and normalized kernel.

Proof. First remark that

exp(−γ‖x − x ′‖22) =
exp(2γ〈x , x ′〉)

exp(γ‖x‖2) exp(γ‖x ′‖2)

=
K ′(x , x ′)√

K ′(x , x)K ′(x ′, x ′)

with K ′(x , x ′) = exp(2γ〈x , x ′〉) and that K ′ is PDS since

K ′(x , x ′) =
∑
n≥0

(2γ〈x , x ′〉)n

n!

namely a series of the PDS kernel (x , x ′) 7→ 2γ〈x , x ′〉.



The tanh kernel. Also called the sigmoid kernel

K ′(x , x ′) = tanh(a〈x , x ′〉+ c) =
ea〈x ,x

′〉+c − ea〈x ,x
′〉+c

ea〈x ,x ′〉+c + ea〈x ,x ′〉+c

for a, c > 0. It is again a PDS kernel (same argument as for the
RBF kernel).

Remark. By far, the RBF kernel is the most widely used: uses as a
similarity measure the Euclidean norm More mathematical details
are covered in the exercices.

Kernel based algorithms how to use kernels for classification and
regression?

Let’s recall the primal and dual formulation of the SVM



Linear SVM. Primal problem is

min
w∈Rd ,b∈R,s∈Rn

1

2
‖w‖22 + C

n∑
i=1

si

subject to yi (〈xi ,w〉+ b) ≥ 1− si and si ≥ 0 for all i = 1, . . . , n

or equivalently

argmin
w∈Rd ,b∈R

1

2
‖w‖22 + C

n∑
i=1

`(yi , 〈xi ,w〉+ b)

where `(y , y ′) = max(0, 1− yy ′) = (1− yy ′)+ is the hinge loss

Label prediction given by

y = sgn (〈x ,w〉+ b)





Kernel SVM: replace xi by ϕ(xi ). In the primal this leads to

argmin
w∈Rd ,b∈R

1

2
‖w‖22 + C

n∑
i=1

`(yi , 〈ϕ(xi ),w〉+ b)

Label prediction is given by

y = sgn (〈ϕ(x),w〉+ b)

In the primal, you need to compute ϕ(x)!



Dual problem is

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyj〈xi , xj〉

subject to 0 ≤ αi ≤ C and
n∑

i=1

αiyi = 0 for all i = 1, . . . , n

and the label prediction using dual variables

x 7→ sgn (〈w , x〉+ b) = sgn
( n∑

i=1

αiyi 〈x , xi 〉+ b
)

depends only on the features xi via their inner products 〈xi , xj〉



Fundamental remark. The dual problem depends only on the
features via their inner products

Given some kernel K , let’s replace the “raw” inner products 〈xi , xj〉
by the “new” inner products K (xi , xj) = 〈ϕ(xi ), ϕ(xj)〉

The kernel trick. Once again, to train the SVM with a kernel,
you don’t need to know or compute the ϕ(xi )



The kernel SVM

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjK (xi , xj)

subject to 0 ≤ αi ≤ C and
n∑

i=1

αiyi = 0 for all i = 1, . . . , n

and the label prediction using dual variables

x 7→ sgn
( n∑

i=1

αiyiK (x , xi ) + b
)

with the intercept given by

b = yi −
n∑

j=1

αjyjK (xj , xi )

for any i such that 0 < αi < C (cf previous lecture)



This proves that the hypothesis solution writes

h(x) = sgn
( n∑

i=1

αiyiK (x , xi ) + b
)
,

namely a combination of functions K (xi , ·) where xi are the
support vectors.

For the RBF kernel, the decision function is

x 7→
∑

i :αi 6=0

αiyi exp
(
− γ‖x − xi‖22

)
+ b

It is a mixture of Gaussian “densities”. Let’s recall that the xi with
αi 6= 0 are the support vectors



x 7→
∑

i :αi 6=0

αiyi exp
(
− γ‖x − xi‖22

)
+ b



The kernel trick is not only for the SVM

Representer theorem. If K is a PDS kernel and H its
corresponding RKHS, we have that for any increasing function g
and any function L : Rn → R that the optimization problem

argmin
h∈H

g(‖h‖) + L(h(x1), . . . , h(xn))

admits only solutions of the form

h =
n∑

i=1

αiK (xi , ·).



Kernel ridge regression.

Consider this time a continuous label yi ∈ R, features xi ∈ X
for i = 1, . . . , n and a features mapping ϕ : X → H with PDS
kernel K

Kernel ridge regression considers the problem

argmin
w

{ n∑
i=1

`(yi , 〈w , ϕ(xi )〉) +
λ

2
‖w‖22

}
where λ is a penalization parameter, and `(y , y ′) = 1

2(y − y ′)2

is the least-squares loss

Can be written as

argmin
w

F (x) with F (w) = ‖y − Xw‖22 + λ‖w‖22

with X the matrix with rows containing the ϕ(xi ) and
y = [y1 · · · yn] ∈ Rn



This problem is strongly convex, and admits a global
minimum iff

∇F (w) = 0 namely (X>X + λI )w = X>y

Note that X>X + λI is always invertible. Thus kernel ridge
allows admits a closed-form solution

Requires to solve a D × D linear system, where D is the
dimension of H
What if D is large ?

Let’s us the kernel trick, as we did for SVM



Representer theorem says that we can find α such that

h(x) = 〈w , ϕ(x)〉 =
n∑

i=1

αiK (xi , x) =
n∑

i=1

αi 〈ϕ(xi ), ϕ(x)〉

for any x ∈ X
This means that

w = X>α

Now, use the following trick: for any matrix X , we have

(X>X + λI )−1X> = X>(XX> + λI )−1

This entails

w = (X>X + λI )−1X>y = X>(XX> + λI )−1y

which gives (note that (XX>)i ,j = 〈ϕ(xi ), ϕ(xj)〉 = K (xi , xj))

α = (K + λI )−1y



Proof of the trick. Note that

(X>X + λI )X> = X>(XX> + λI ).

Multiplying on the left by (X>X + λI )−1 leads to

X> = (X>X + λI )−1X>(XX> + λI ).

and then on the right by (XX> + λI )−1 concludes with

(XX> + λI )−1X> = (X>X + λI )−1X>

A cute trick. But let’s do it like we did for the SVMs
(just to be sure...)



An alternative formulation of

min
w

n∑
i=1

(yi − 〈w , ϕ(xi )〉)2 + λ‖w‖22

is given by

min
w

n∑
i=1

(yi − 〈w , ϕ(xi )〉)2 subject to ‖w‖22 ≤ r2

and also

min
w

n∑
i=1

s2i subject to ‖w‖22 ≤ r2 and si = yi − 〈w , ϕ(xi )〉



Which leads to the following Lagrangian

L(w , s, α, λ) = min
w

n∑
i=1

s2i + min
w

n∑
i=1

αi (yi − si − 〈w , ϕ(xi )〉)

+ λ(‖w‖22 − r2)

so that the KKT conditions leads to the following properties:

∇wL = −
n∑

i=1

αiϕ(xi ) + 2λw ⇒ w =
1

2λ

n∑
i=1

αiϕ(xi )

∇siL = 2si − αi ⇒ si = αi/2

and the slackness complementary conditions:

αi (yi − si − 〈w , ϕ(xi )〉) = 0 and λ(‖w‖22 − r2) = 0



Plugging the expressions of w and si in functions of α in L gives
after some algebra the dual objective

D(α) = −λ
n∑

i=1

α2
i + 2

n∑
i=1

αiyi

−
∑

1≤i ,j≤n
αiαj〈ϕ(xi ), ϕ(xj)〉 − λr2

(where we replaced 2λαi by αi ) which can be written matricially as

D(α) = −λ‖α‖22 + 2〈α, y〉 − α>XX>α

= 2〈α, y〉 − α>(K + λI )α

with optimum achieved for

α = (K + λI )−1y

(same as before, of course...)



In summary

Solving a problem in the dual benefits from the kernel trick

Allows to construct complex non-linear decision functions

OK if n is not too large... (if the n × n Gram matrix K fits in
memory)

Otherwise, stick to the primal! (and forget about kernels...)

But don’t forget about feature engineering (yes, again !)



Thank you!


