
Introduction to machine learning

Master 2 Modélisation Aléatoire
Master 2 Mathématiques et Informatique pour la Data Science

Aurélie Fischer

Some supervised learning methods

I k-nn and kernel rules

I Classification and regression trees (CART)

I Bagging

I Random forests

I Boosting, adaboost, gradient boosting

General setting

We observe n independent realizations
Dn = (X1,Y1), (X2,Y2), . . . (Xn,Yn) from a generic random vector
(X ,Y), with values in Rd × {0, 1} (binary classification),
Rd ×{1, . . . ,K} (multi-class classification), or Rd ×R (regression).

Nearest neighbor rule

The simplest nonparametric classification or regression rule is
probably the nearest neighbor rule.

Definition (Nearest neighbors)

Xi is said to be the k-th nearest neighbor of x if the distance
‖x − Xi‖ is the k-th smallest distance among
‖x − X1‖, . . . , ‖x − Xn‖.
Ties are broken by choosing the smallest index.

Classification

Definition (Nearest neighbor classifier)

The rule is defined by

gn(x) =

{
1 if

∑n
i=1 wni1{Yi=1} >

∑n
i=1 wni1{Yi=0}

0 sinon,

where wni = 1
k if Xi is among the k nearest neighbors of x and

wni = 0 otherwise.

This is a majority vote among the observations that are the k
nearest neighbors of x .

Regression

Definition (Nearest neighbor rule for regression)

The rule is defined by

mn(x) =
n∑

i=1

wniYi ,

where wni = 1
k if Xi is among the k nearest neighbors of x and

wni = 0 otherwise.

Model selection

This rule allows to easily illustrate the overfitting - underfitting
issue : for k = 1, we only consider one point, the nearest neighbor
of x ; if k is large, we take almost all observations into account,
which cannot bring useful information for classification or
regression.

Let g? denote the best possible classifier, defined by

g? = argmin
g :Rd→{1,...,K}

P(g(X) 6= Y).

Recall that this classifier g? is called Bayes classifier. Denote by
L? = L(g?) the Bayes error, that is the lowest possible error rate.

Let Ln denote the error of the k-nn classifier. The next result
ensures that the classification rule is universally consistent.

Theorem
If k →∞ and k/n→ 0, then for every distribution of the random
pair (X ,Y), we have

ELn → L?.

Kernel classifier

The k-nn idea may be modified to obtain a smoother rule. Instead
of specifying a number of neighbors, the neighborhood may be
defined using a distance notion.

The simplest such rule is the moving window rule, where every
point at distance at most r of x is considered as a neighbor of x .

Kernel classifier

The k-nn idea may be modified to obtain a smoother rule. Instead
of specifying a number of neighbors, the neighborhood may be
defined using a distance notion.

The simplest such rule is the moving window rule, where every
point at distance at most r of x is considered as a neighbor of x .

Let B(x , r) denote the open ball with center x and radius r .

Definition (Moving window rule)

gn(x) =

{
1 if

∑n
i=1 1{Yi=1,Xi∈B(x ,r)} >

∑n
i=1 1{Yi=0,Xi∈B(x ,r)}

0 otherwise.

To obtain a smoother rule, giving more weights to the closest
points and less to the furthest, we may use a kernel function K ,
which is a nonnegative function from Rd to R, such that
K (x) = L(‖x‖), with x 7→ L(x) nonincreasing.

Let B(x , r) denote the open ball with center x and radius r .

Definition (Moving window rule)

gn(x) =

{
1 if

∑n
i=1 1{Yi=1,Xi∈B(x ,r)} >

∑n
i=1 1{Yi=0,Xi∈B(x ,r)}

0 otherwise.

To obtain a smoother rule, giving more weights to the closest
points and less to the furthest, we may use a kernel function K ,
which is a nonnegative function from Rd to R, such that
K (x) = L(‖x‖), with x 7→ L(x) nonincreasing.

Definition (Kernel classification rule)

gn(x) =

{
1 if

∑n
i=1 1{Yi=1}K

(
x−Xi
r

)
>
∑n

i=1 1{Yi=0}K
(
x−Xi
r

)
0 otherwise,

.

Taking the kernel given by K (x) = 1{x∈B(0,1)}, we get the moving
window rule.

Some kernel functions :

I Gaussian, K (x) = e−‖x‖
2
,

I Cauchy, 1
1+‖x‖d+1 ,

I Epanechnikov, (1− ‖x‖2)1{‖x‖≤1}.

Model selection : choosing the kernel function, and the window r .

Theorem
Let K be a regular kernel, which means that there exists R such
that K (x) ≥ b1B(0,R)(x) and

∫
supy∈B(x ,R) K (y)dx < +∞. If

r → 0 and nrd → +∞, then, for every distribution of (X ,Y), and
for every ε > 0, there exists n0, such that for n > n0 ,

P(Ln − L? > ε) ≤ 2e−nε
2/32ρ2 .

Here, ρ only depends on K and the dimension d .

Kernel regression

Definition (Kernel regression rule)

mn(x) =

∑n
i=1 K

(
x−Xi
r

)
Yi∑n

i=1 K
(
x−Xi
r

) .

Trees
This is a regression tree

Trees
This is a classification tree

CART = Classification and Regression Trees

Tree principle

I Construct a recursive partition of rectangular domains
R1, . . . ,Rm using a tree-structured set of “questions” : splits
around a given value of a variable.

I Classification :
The predicted class ŷ is the class of the domain / leaf
containing x , that is the majority class in the domain.
It is possible to compute the class probabilities, by taking the
proportion of points of class k in the domain R` :

p̂k(R`) =
1

n`

∑
Xi∈R`

1{Yi=k}.

The predicted class is then the class which maximizes this
proportion p̂k(R`).

I Regression : average in each domain / leaf.

Remarks

I Quality of the prediction depends on the tree / the partition.

I Issue: finding the optimal tree is hard!

Heuristic construction of a tree

I Greedy approach = the best split point is chosen each time to
create branches, in a top-down process.

Heuristic construction of a tree

I Start from a single region containing all the data (called root).

I Recursively splits nodes (i.e. rectangles) along a certain
dimension (feature) and a certain value (threshold).

I Leads to a partition of the feature space...

I ... which is equivalent to a binary tree.

Remarks

I The splits, once they have appeared, remain throughout the
construction of the tree.

I Heuristic: choose a split so that the two new regions are as
homogeneous as possible...

Homogeneous means:

I For classification: class distributions in a node should be close
to a Dirac mass.

I For regression: labels should be very concentrated around
their mean in a node.

How to quantify homogeneousness?

I Variance (regression)

I Gini index, Entropy (classification)

I Among others

Splitting

I We want to split a node N into a left child node NL and a
right child node NR .

I The childs depends on a cut: a (feature, threshold) pair
denoted by (j , t).

Introduce

NL(j , t) = {x ∈ N : xj < t} and NR(j , t) = {x ∈ N : xj ≥ t}.

Finding the best split means finding the best (j , t) pair

I Compare the impurity of N with the ones of NL(j , t) and
NR(j , t) for all pairs (j , t)

I Using the information gain of each pair (j , t)

For regression impurity is the variance of the node

V (N) =
∑

i :xi∈N
(yi − ȳN)2 where ȳN =

1

|N|
∑

i :xi∈N
yi

with |N| = #{i : xi ∈ N} and information gain is given by

IG(j , t) = V (N)− |NL(j , t)|
|N|

V (NL(j , t))− |NR(j , t)|
|N|

V (NR(j , t))

For classification with labels yi ∈ {1, . . . ,K}. First, we compute
the classes distribution pN = (pN,1, . . . , pN,K) where

pN,k =
#{i : xi ∈ N, yi = k}

|N|
.

Then, we can consider an impurity measure I such as:

G (N) = G (pN) =
K∑

k=1

pN,k(1− pN,k) (Gini index)

H(N) = H(pN) = −
K∑

k=1

pN,k log2(pN,k) (Entropy index)

and for I = G or I = H we consider the information gain

IG(j , t) = I (N)− |NL(j , t)|
|N|

I (NL(j , t))− |NR(j , t)|
|N|

I (NR(j , t))

CART builds the partition iteratively

For each leaf N of the current tree

I Find the best (feature, threshold) pair (j , t) that maximizes
IG(j , t)

I Create the two new childs of the leaf

I Stop if some stopping criterion is met

I Otherwise continue

Stopping criterions

I Maximum depth of the tree

I All leafs have less then a chosen number of samples

I Impurity in all leafs is small enough

I Testing error is increasing

I Etc...

Remarks

I CART with Gini is probably the most used technique

I Other criterions are possible: χ2 homogeneity, other losses
than least-squares, etc.

More remarks

I Usually overfits (maximally grown tree typically overfits)

I Usually leads to poor prediction

I Leads to nice interpretable results

I Is the basis of more powerful techniques: random forests,
boosting (ensemble methods)

Example on iris dataset

I using R with the rpart and rpart.plot library

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●
●

● ●
●

●●
●

●
●

●

●

●
●
●●●●

●● ●● ●●
● ●●●
●
●●●
●
●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●
●

●

●
●●

●

●

● ●
●

●
●●
●

●

●

●

●●● ●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●●

●

●
●

●●

●
●

●
●
●

●
●

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

0.74

0.53

0.46

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●●●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●
●●

●
●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

0.27

0.75

0.86

0.18

0.56

0.4

●●●●●

●
●
●●
●
●●
●●

●

●●
●●●
●

●

●

●

●●

●

●●●●

●

●
●●●●
●
●●
●●
●

●

●
●
●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●
●

●

●
●
●
●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

0.28

0.55

0.28

0.23

0.66

0.54

0.33

0.79

0.32

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length
Sepal.W

idth
Petal.Length

Petal.W
idth

5 6 7 8 2.0 2.5 3.0 3.5 4.0 4.5 2 4 6 0.0 0.5 1.0 1.5 2.0 2.5

5

6

7

8

2.0

2.5

3.0

3.5

4.0

4.5

2

4

6

0.0

0.5

1.0

1.5

2.0

2.5

Species
●a
●a
●a

setosa

versicolor

virginica

Petal.Length < 2.5

Petal.Width < 1.8

setosa
.33 .33 .33

100%

setosa
1.00 .00 .00

33%

versicolor
.00 .50 .50

67%

versicolor
.00 .91 .09

36%

virginica
.00 .02 .98

31%

yes no
setosa
versicolor
virginica

Tree pruning

Tree pruning

I Bottom-up approach: try to remove leafs and all of what’s
below

I Number of subtrees is large, but the tree structure allows to
find the best efficiently (dynamic programming)

Key idea
Given a maximally grown tree Tmax, evaluate a subtree T ⊂ Tmax

using

|T |∑
`=1

∑
i :Xi∈R`

(Yi − ŶR`
)2 + α|T |,

|T |∑
`=1

(1− p̂C`
(R`)) + α|T |.

where

I |T | = number of terminal leaves in the tree

I α > 0 is a regularization parameter

Note that α = 0 leads to Tmax

This means that we look for a subtree T that makes a good
balance between the depth of the tree and its accuracy.

Remarks

I This allows to limit overfitting.

I α may be chosen using V -fold cross-validation.

Unpruned maximal tree

Pruned tree

Bagging

I Decision trees suffer from high variance.

I Bagging is a general-purpose procedure to (hopefully) reduce
the variance of any statistical learning method.

I Particularly useful for decision trees.

I Bagging = Bootstrap Aggregating : combine classifiers fitted
on bootstrap samples.

Bootstrap

I Generation of “new” datasets

I Sampling with replacement from the dataset

Algorithm 1 Bagging

1: for b = 1, . . .B do

2: Sample with replacement D
(b)
n from the original dataset Dn.

3: Fit a tree f̂ (b) on D
(b)
n .

4: end for
5: Aggregate f̂ (1), . . . , f̂ (B) : majority vote for classification, aver-

age for regression.

Regarding the depth, two different approaches may be used :

I the simple strategy, consisting in building trees which are
potentially very large, without any pruning.

I a procedure where every tree is pruned, using the initial
sample Dn as validation set.

How do we proceed if we want to estimate class probabilities
rather than the classes themselves? One might want to consider
the proportions (p1(x), . . . , pK (x)), but they turn out not to be
good estimators of class probabilities.

Example

Let’s consider a simple two-class example. Suppose that the true
probability of class 1 is 0.75 and that the different trees all predict
1 for x . Then, p1(x) = 1, which is not correct.

How do we proceed if we want to estimate class probabilities
rather than the classes themselves? One might want to consider
the proportions (p1(x), . . . , pK (x)), but they turn out not to be
good estimators of class probabilities.

Example

Let’s consider a simple two-class example. Suppose that the true
probability of class 1 is 0.75 and that the different trees all predict
1 for x . Then, p1(x) = 1, which is not correct.

One solution is to directly aggregate by bagging the class
probabilities rather than labels. The predicted class is the one
corresponding to the highest probability.

If the class probabilities of x estimated by each of the trees are
noted p̂bk (x), k = 1, . . . ,K , b = 1, . . . ,B, we calculate

p̂bagk (x) =
1

B

B∑
b=1

p̂bk (x), k = 1, . . . ,K ,

and then
f̂ bag (x) = arg max

k=1,...,K
p̂bagk (x).

In fact, this strategy is interesting for probability estimation, but
also more generally, because it tends to produce classifiers with less
variance, especially when B is not very large.

To understand why the technique works, consider, in a situation
where there are two classes, B independent classifiers f̂ b,
b = 1, . . . ,B, each of which has a classification error e = 0.4.

Suppose, for example, that the true class of x is 1: we therefore
have P(f̂ b(x) = 0) = 0.4. The number of trees B0 voting for class
0 follows a binomial distribution B(B, 0.4). By definition of
bagging, we have P(f̂ bag (x) = 0) = P(B0 ≥ B/2). As
B0 ∼ B(B, 0.4), by the law of large numbers, B0/B converges
towards 0.4 when B tends to infinity, and thus this probability
tends to 0. This means that the classifier constructed by bagging
gives exact predictions when the number of bootstrap samples B
tends to infinity.

On the other hand, if we consider the same context, but with a
probability of error of the independent classifiers
P(f̂ b(x) = 0) = 0.6, the same arguments show that
P(f̂ bag (x) = 0) = P(B0 ≥ B/2) tends to 1, which means that the
predictions of the bagging classifier become totally inaccurate
when the number of bootstrap samples increases.

Warning: here, we have assumed in both cases that the individual
classifiers are independent, which is not the case, since they are
built on very similar samples. However, the conclusion is that a
bagging strategy can improve the results of a good classifier, but
can further degrade those of an already bad classifier!

Drawbacks :

I The loss of interpretability, since the resulting classifier is not
necessarily a tree any more.

I Computational complexity, since we build B times a tree,
maybe with pruning, with validation on the sample Dn.

Random forests

Random forests are an alternative version of bagging. The
ingredients are:

Regression or classification trees. In the random forest
algorithm, these trees can be maximally grown.

Bagging: each tree is trained over a sampling with replacement of
the dataset.

I Instead of a single tree, it uses an average of the predictions
given by several trees: reduces noise and variance.

I Note that this strategy works all the better as the trees are
less correlated.

Feature subsampling

Feature subsampling step: the particularity of random forests is
that only a random subset of p features is tried each time when
looking for a split.
This reduces the correlation between the trees.

Recommendations from the authors:

I Classification : default value for p is b
√
dc and minimum node

size is 1.

I Regression : default value for p is bd/3c and minimum node
size is 5.

In practice, best values depend on the problem : tuning
parameters.

Out of bag samples

For each observation (Xi ,Yi), on may construct the random forest
predictor corresponding to the average of the trees built thanks to
bootstrap samples in which this observation does not appear.

Computing the OOB error is similar to performing cross validation
and allows to tune the parameters. This is a very interesting
feature of random forests.

Variable importance
Regarding interpretability, once again, the resulting estimator is not
a tree. Nevertheless, random forests come along with variable
importance plots, yielding very useful information.

To compute variable importance:

I At each split in each tree, the improvement in the
split-criterion is attributed to the splitting variable, and then,
for each variable, the values are accumulated over all the trees
in the forest.

I A different variable importance measure, based on the OOB
samples.
When the b-th tree is grown, the prediction accuracy is
compared with the prediction accuracy when the values for
the j-th variable are randomly permuted in the OOB samples.
The decrease in accuracy due to this permuting is averaged
over all trees, and is used as a measure of the importance of
variable j in the random forest.

Some remarks on the method

I Usually, trees are not pruned in random forests. Indeed, the
gain of pruning does not seem crucial, and hence, this choice
allows to save a tuning parameter.

I When the number of variables is large, but the fraction of
relevant variables small, random forests do not perform very
well for small p, since, at each split, the chance that the
relevant variables will be selected is small.

Random forest algorithm

1. For b = 1, . . . ,B,

1.1 Draw a bootstrap sample Db
m of size m from the sample Dn.

1.2 Build a tree f̂ b on Db
m as follows :

I Draw at random p variables among d .
I Select the best split among these p variables.

2. Combine the predictions of all B trees by a majority vote or
an average.

A variant of random forests, ExtraTrees

ExtraTrees: extremely randomized trees.

Here, trees are built on the initial sample Dn, no bootstrap.

I A random subset of features is drawn as for random forests.

I A few number of thresholds is then selected uniformly at
random in the feature range.

I Finally, the best split among these thresholds and features is
selected using some impurity criterion (Gini, Entropy).

Remark

I Due to this random choice, the algorithm is faster.

I Random thresholds lead to more diversified trees, and thus,
are some form of regularization.

I Since trees are combined and averaged, not so bad to select
the thresholds at random...

Using scikit-learn: decision functions of
I tree.DecisionTreeClassifier

I ensemble.{ExtraTreesClassifier,RandomForestClassifier}

Input data

.78

Decision tree

.82

Extra trees

.78

Random Forest

.85 .80 .90

.95 .93 .95

Boosting

Boosting is another ensemble method, which differs from bagging
and random forests by the fact that, this time, the estimators to be
combined are different in nature : they are not any more
“equivalent” objects built thanks to bootstrap.

I Features Xi ∈ Rd .

I Labels Yi ∈ {−1, 1} for binary classification and Yi ∈ R for
regression.

I Finite set of “weak estimators”, very simple.

I Classification : slightly better than a coin toss (classification
error < 1/2).

I Regression : slightly better than average of all Yi ’s.

Examples:

I Trees: One-level decision tree, also called decision stump :
there is only one node, the root, which is immediately
connected to the leaves. The prediction is made based on the
value of a single input feature.

I Other estimators: linear model (regression) or logistic
regression (classification), using one or two features.

A stump

Boosting principle

The most widely used algorithm is AdaBoost: ADAptive
BOOSTing.

AdaBoost.M1 or discrete AdaBoost for binary classification.

General idea : produce iteratively a sequence of weak estimators,
to be combined linearly in order to get the final prediction

f boost(x) = sign

(
B∑

b=1

βbf
b(x)

)
.

Here, the weights β1, . . . , βB are computed by the boosting
algorithm, and weight the contribution of the f b(x). The goal is to
give higher influence to the more accurate classifiers in the
sequence.

How to choose the weights ? How to build adaptively the weak
estimators ?

The data modifications at each boosting step consist of applying
weights w1, . . . ,wn to the training observations (Xi ,Yi),
i = 1, 2, . . . , n.

I Initially, all weights are set to 1/n.

I Then, for b = 2, 3, . . . ,B the observation weights are
individually modified and the classification algorithm is
reapplied to the weighted observations.

I At step b, the observations that were misclassified at the
previous step have their weights increased, whereas the
weights are decreased for observations that were classified
correctly. Hence, progressively, observations that are difficult
to classify correctly receive ever-increasing influence.

AdaBoost Algorithm

1. The weights wi are intialized to w1
i = 1/n for every i .

2. Fo every b = 1, . . . ,B :
2.1 Build a classification tree f b for the data with the weights

w
(
1b), . . . ,w

(
nb).

2.2 Compute the weighted classification error

eb =

∑n
i=1 w

b
i 1{Yi 6=f b(Xi)}∑n
i=1 w

b
i

.

2.3 Define βb by

βb = ln

(
1− eb
eb

)
.

2.4 Update of the weights : for every i ,

w
(b+1)
i ← w

(b)
i exp(βb1{Yi 6=f b(Xi)}).

3. Compute the boosting classifier

f boost(x) = sign

(
B∑

b=1

βbf
b(x)

)
.

Example to get insight

Let us illustrate that AdaBoost is able to increase the performance
of even a very weak classifier.

Consider X1, . . . ,X10 standard independent Gaussian, and

Y =

{
1 if

∑10
j=1 X

2
j > χ2

10(0.5)

−1 otherwise.

Here, χ2
10(0.5) = 9.34 is the median of a chi-squared random

variable with 10 degrees of freedom.

Consider 2000 training observations, with approximately 1000 in
each class, and 10 000 test observations.

As weak classifier, we use a stump. Applying this classifier alone to
the training data set yields a very poor test set error : 45.8%, so
almost as bad as random guessing.

Thanks to boosting iterations, the error rate decreases, reaching
5.8% after 400 iterations.

It also outperforms a single large classification tree (error rate
24.7%).

General idea

In fact, AdaBoost may be seen as a particular case of a bunch of
procedures called gradient boosting, based on functional gradient
descent.

The overall operation consists in looking for f 1, . . . , f B ∈ F and
α1, . . . , αB ∈ R such that

f boost(x) =
B∑

b=1

αbf
b(x)

minimizes an empirical risk

1

n

n∑
i=1

`(Yi , f
boost(Xi)),

where ` is a loss (least-square, logistic, etc.).

Numerical optimization via Gradient Boosting

At step b + 1, look for fb+1 and αb+1 such that

(αb+1, fb+1) = argmin
α∈R,f ∈F

n∑
i=1

`(Yi , f
boost
b (Xi) + αf (Xi))

and put
f boostb+1 = f boostb + αb+1fb+1.

I Exact minimization at each step is too hard.

I Replace exact minimization by a gradient step.

Compute the negative gradient − ∂
∂f `(Y , f) and evaluate at

f boostb (Xi) :

δ̂b,i = −∂`(Yi , f (Xi))

∂f (Xi)

∣∣∣∣
f (Xi)=f boostb (Xi)

, i = 1, . . . , n.

If `(y , z) = 1
2(y − z)2, this is given by

δ̂b = −
(
f boostb (X1)− Y1, . . . , f

boost
b (Xn)− Yn

)
.

Minimization is approximated by a step in the negative gradient
direction.

These gradients might not be included in the constraint space F
(in particular, sum of trees), and this steps dot not provide
functions able to generalize: the next task is to approximate the
negative gradients using elements of F .

We look for a weak learner whose predictions are as close as
possible to the negative gradient :

(f , ν) = argmin
f ∈F ,ν∈R

n∑
i=1

(
νf (Xi)− δ̂b,i

)2
.

For least-squares, this means

(f , ν) = argmin
f ,ν

n∑
i=1

(
νf (Xi)− f boostb (Xi) + Yi

)2
,

meaning that we look for a weak learner that corrects the current
residuals obtained from the current f boostb .

Gradient boosting algorithm

1. Initialize f boost0 = argminγ∈R
∑n

i=1 `(Yi , γ).

2. For b = 1, . . . ,B

I δ̂b ← −∂`(Yi ,f (Xi))
∂f (Xi)

∣∣∣∣
f (Xi)=f boostb (Xi)

, i = 1, . . . , n

I f b+1 ← f with

(f , ν) = argmin
f ,ν

n∑
i=1

(
νf (Xi)− δ̂b,i

)2
.

I αb+1 ← argminα
∑n

i=1 `(Yi , f
boost
b (Xi) + αf b+1(Xi))

Return a boosting learner f boost(x) =
∑B

b=1 αbf
b(x).

Remark
In practice, the step size in the gradient descent may be fixed.

Back to AdaBoost
I Gradient boosting with the exponential loss `(y , z) = e−yz

(binary classification).
I Construct recursively

f boostb+1 (x) = f boostb (x) + αb+1f
b+1(x)

where

(f b+1, αb+1) = argmin
f ,α

1

n

n∑
i=1

e−Yi (f
boost
b (Xi)+αf (Xi))

As already mentioned, AdaBoost was originally constructed in
order to over-weights miss-classified samples.

At each iteration, we want to

I Select a weak learner that improves the current fit.

I Focus on sample points that are not well-fitted.

I Combine each step in a meaningful way.

A mental picture
When weak learners are 1-split decision trees (stumps)

The problem

(f b+1, αb+1) = argmin
f ,α

1

n

n∑
i=1

e−Yi (f
boost
b (Xi)+αf (Xi))

may be rewritten

(f b+1, αb+1) = argmin
f ,α

1

n

n∑
i=1

w
(b)
i e−Yiαf (Xi),

where w
(b)
i = exp

(
−Yi f

boost
b (Xi)

)
, 1, . . . , n. These weights do not

depend on α or f .

Note that

n∑
i=1

w
(b)
i e−Yiαf (Xi) = e−α

∑
Yi=F (Xi)

w
(b)
i + eα

∑
Yi 6=F (Xi)

w
(b)
i

= (eα − e−α)
n∑

i=1

w
(b)
i 1{Yi 6=f (Xi)} + e−α

n∑
i=1

w
(b)
i ,

where only the quantity
∑n

i=1 w
(b)
i 1{Yi 6=f (Xi)} depends on f .

Differentiating in α leads to

(eα + e−α)
n∑

i=1

w
(b)
i 1{Yi 6=f (Xi)} − e−α

n∑
i=1

w
(b)
i .

Then

(eα + e−α)
n∑

i=1

w
(b)
i 1{Yi 6=f (Xi)} = e−α

n∑
i=1

w
(b)
i

is equivalent to

eα + e−α

e−α
=

∑n
i=1 w

(b)
i∑n

i=1 w
(b)
i 1{Yi 6=f (Xi)}

,

i.e.

e2α =

∑n
i=1 w

(b)
i∑n

i=1 w
(b)
i 1{Yi 6=f (Xi)}

− 1.

2 steps

I Hence, for any value of α > 0, we may optimize the above
quantity in f by minimizing

n∑
i=1

w
(b)
i 1{Yi 6=f (Xi)}.

In other words, we look for the classifier minimizing the
weighted error rate in predicting y .

I Optimization in α then leads to

αb =
1

2
ln

(
1− eb
eb

)
,

where

eb =

∑n
i=1 w

(b)
i 1{Yi 6=f b(Xi)}∑n
i=1 w

(b)
i

.

Consequently, updating f boostb+1 (x) = f boostb (x) + αb+1f
b+1(x), we

get for the weights

w
(b+1)
i = w

(b)
i e−αbYi f

b(Xi)

= w
(b)
i exp(βb1{Yi 6=f b(Xi)})e

−αb ,

since −Yi f
b(Xi) = 21{Yi 6=f b(Xi)} − 1.

Note that the factor multiplies all weights by the same value, so
that it has not effect. So, we finally obtain the AdaBoost
algorithm.

Choice of hyper-parameters

I For trees, choose their depth (usually 1, 2 or 3).

I For generalized linear models (logistic regression), select the
number of features (usually one or two).

I Number of iterations B (usually a few hundreds, few
thousands, until test error does not improve).

Regularization

I Add a regularization factor

f boostb+1 = f boostb + βαb+1f
b+1

where β chosen using cross-validation.

Check XGBoost’s documentation for more details on the
hyper-parameters

State-of-the-art implementations of Gradient Boosting

I With many extra tricks...

XGBoost

I https://xgboost.readthedocs.io/en/latest/

I https://github.com/dmlc/xgboost

LightGBM

I https://lightgbm.readthedocs.io/en/latest/

I https://github.com/Microsoft/LightGBM

https://xgboost.readthedocs.io/en/latest/
https://github.com/dmlc/xgboost
https://lightgbm.readthedocs.io/en/latest/
https://github.com/Microsoft/LightGBM

