Weighted algorithms for compressed sensing and matrix completion

Published in arXiv preprint, 2011

S. Gaïffas and G. Lecué

This paper is about iteratively reweighted basis-pursuit algorithms for compressed sensing and matrix completion problems. In a first part, we give a theoretical explanation of the fact that reweighted basis pursuit can improve a lot upon basis pursuit for exact recovery in compressed sensing. We exhibit a condition that links the accuracy of the weights to the RIP and incoherency constants, which ensures exact recovery. In a second part, we introduce a new algorithm for matrix completion, based on the idea of iterative reweighting. Since a weighted nuclear “norm” is typically non-convex, it cannot be used easily as an objective function. So, we define a new estimator based on a fixed-point equation. We give empirical evidences of the fact that this new algorithm leads to strong improvements over nuclear norm minimization on simulated and real matrix completion problems.

PDF Download paper here